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Abstract

Humanoid locomotion remains a major challenge for deep reinforcement learning (RL), requiring

extensive training time while often producing unnatural, unstable gaits. Inspired by the efficiency of

human motor development, this work explores two complementary strategies to better emulate that

learning process: a curriculum of locomotion subtasks aligned with developmental milestones and

a progressively expanding neural network architecture. We first establish baselines for individual

subtasks, providing reference rewards and timestep thresholds to guide curriculum design. We then

conduct a preliminary investigation into the effects of different curriculum orderings, highlighting the

difficulty of transferring knowledge across tasks and suggesting directions for future improvement.

In parallel, we systematically run ablation studies on depthwise and widthwise expanding networks

for the standing task. Together, these experiments lay a strong foundation for future work that

integrates a structured curriculum and an expanding network, with the ultimate goal of achieving

more sample-efficient, human-like locomotion.

1. Introduction

1.1. Motivation

Humans learn to walk with remarkable efficiency. Within eight to eighteen months, infants progress

from complete immobility to confident bipedal locomotion. In contrast, humanoid robots trained

with reinforcement learning (RL) require orders of magnitude more learning experience and still

struggle to produce natural gaits. This discrepancy raises an important question: what makes

walking relatively tractable for humans, yet challenging for RL-trained humanoid robots?
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A key distinction lies in the structured developmental timeline of human motor development.

Infants do not learn to walk all at once; rather, they follow a well-defined sequence of subtasks

- such as sitting, crawling and standing - that each reduce the degrees of freedom involved at a

given stage.[1] From an optimization perspective, learning locomotion presents a vast search space

that becomes far more tractable to navigate when segmented into smaller, progressively solvable

subtasks. This developmental progression - or curriculum - thus helps establishes a defined roadmap

toward optimal motor policies.

A second key distinction lies in the adaptive nature of the developing infant brain. Unlike the

static architectures typically employed in RL systems, an infant’s neural capacity grows dynamically,

expanding its representational capacities over time. The principle of “starting small” suggests that

early cognitive constraints - on memory, attention span and processing resources - encourage the

mastery of simple foundational behaviors first, thereby providing a valuable inductive bias.[2] As

neural capacity expands, these early-acquired skills form a scaffold upon which more advanced

motor capabilities can be built.

Despite this insights, however, most existing RL frameworks typically treat walking as a single

monolithic task and rely on static neural architectures. Although such approaches can eventually

yield walking policies, they often demand enormous computational budgets or end up producing

awkward, jittery gaits. Alternatively, they may depend on external scaffolds such as footstep

planners or motion capture datasets, essentially shifting the burden of the problem elsewhere. A

more developmentally inspired approach - one that grows neural capacity in tandem with subtask

mastery along a curriculum - may better replicate the sample efficiency and fluidity observed in

human motor development.

1.2. Goal

Motivated by these insights, our goal is to design a control policy for humanoid locomotion that

achieves efficient, natural walking with reduced sample complexity. To this end, we propose a

framework inspired by developmental psychology that leverages two complementary strategies.

2



First, we design a curriculum of locomotion tasks aligned with human developmental milestones,

enabling the agent to master progressively more complex subtasks before attempting full bipedal

walking. Second, we adopt an expanding network approach, gradually increasing the policy’s

network capacity in tandem with subtask mastery. By combining these two strategies, we aim to

consolidate foundational skills early in training while continuously accommodating new complexity,

thus establishing a more structured pathway to complex motor control.

In this semester’s work, we took initial steps toward that goal by running separate experiments on

each component of our overarching approach. With respect to the curriculum, we began by assessing

the learnability of individual subtasks, laying a foundation for future sequencing by establishing

reward and timestep thresholds. We also ran an initial exploration of subtask orderings, finding that

the sequence of [prone → crawl → knees → standing with box assistance → standing] performed

best. We observed limitations in transfer across subtasks, suggesting that the curriculum would

strongly benefit from integration with an expanding network to reduce forgetting. With respect

to the expanding network, we ran ablation studies on both depthwise and widthwise expansions

for the standing subtask. Our results underscore the importance of carefully tuning the learning

rate decay factor and highlight the impact of various architecture sizes. We also gained valuable

insights into learning locomotion more broadly - controlling the output layer size, for instance, is

important to avoid compressing high-dimensional action signals too aggressively. Overall, this body

of work lays the groundwork for a more comprehensive system, one that unites a well-structured

curriculum with progressive network expansion and ultimately emulates the efficient, structured

learning process observed in humans.

2. Problem Background and Related Work

In this section, we first review relevant work in continual learning, which provides the theoretical

foundation for our approach. We then discuss previous RL approaches to humanoid locomotion,

emphasizing how our approach is unique from existing literature. Finally, we provide a brief

overview of our choice of algorithm: Proximal Policy Optimization.
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2.1. Continual Learning

Continual learning addresses the challenge of enabling an agent to sequentially learn multiple tasks

without losing previously acquired capabilities. In practice, this means adapting the same model to

handle a series of tasks T1,T2, ...,Tk over time.[3] The core challenge in this setting is catastrophic

forgetting, wherein updating model weights for a new task dramatically degrades performance on

earlier tasks, as parameters critical to those skills are overwritten. A variety of methods have been

proposed to mitigate catastrophic forgetting. Replay-based methods interleave new experiences

with stored (or synthetic) data examples from previous tasks, effectively reminding the model of

earlier knowledge. Regularization-based approaches, such as Elastic Weight Consolidation (EWC),

constrain parameter updates based on how critical each parameter is to previously learned tasks.

By adding a penalty term derived from a Fisher information matrix approximation, EWC anchors

weights crucial for older tasks while still allowing plasticity for learning new tasks.[3]

A more architectural approach is taken by Rusu et al. [4] via progressive neural networks (PNNs),

which incrementally expand network architecture by introducing a new neural column for each

successive task Tk. Columns corresponding to prior tasks remain frozen, thus preserving previously

learned representations, while lateral connections enable new columns to selectively incorporate

earlier features. This design thus not only mitigates forgetting but also typically shows strong

transfer learning, particularly in comparison to classic pretraining and finetuning approaches.[4]

Among these approaches for mitigating forgetting, PNNs are especially relevant to our work

because they embody the principle of “starting small” - a developmental concept suggesting that

constraining network capacity during initial learning can actually enhance learning by forcing the

system to focus on mastering foundational patterns first.[2] As capacity increases over time, the

learner can then build on these robust foundational representations. Elman [2] demonstrated this

phenomenon in language tasks, where a recurrent neural networks succeeded in mastering recursive

linguistic structures only when its memory capacity started small and gradually expanded. This

parallels the way children learn to speak: beginning with simple speech before scaling up to more

complex language as cognitive capacity develops.
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We can also think of the starting small principle in terms of the learner’s environment, through

the establishment of a training curriculum. In supervised contexts, curriculum learning sequences

subtasks from simple to complex to improve convergence and generalization. In continual learning,

this idea extends beyond the ordering of data points within a single task to the very arrangement

of tasks themselves. Bell and Lawrence [5] found that the sequence in which tasks are introduced

significantly affects both average accuracy and forgetting. Specifically, “maximum distance” task

sequences (based on curvature or task similarity) tended to minimize forgetting more effectively

than "minimum distance" paths. Although not all selectively ordered curricula outperformed random

baselines, these results highlight task ordering as a key design consideration in continual learning.

Elman [2] further emphasized the utility of an incremental curriculum by training networks on

linguistic inputs structured into five phases of increasing complexity. Networks trained with this

curriculum demonstrated superior generalization across linguistic structures compared to those

trained on the full dataset all at once. Elman noted that children are exposed to complex adult

speech from the start, suggesting that the primary developmental constraint in this context is the

child’s neural capacity rather than environmental (or input) complexity.

In the domain of motor control, however, environmental complexity does follow a natural

developmental progression. Indeed, developmental psychology offers a well-defined timeline of

learning to walk, consisting of ten stages that each last approximately two to three months.[6]

Infants begin by developing head and trunk control, first lifting their heads, pushing up with their

arms and rolling over. As they gain strength, infants sit without support, crawl, stand with support

and pull to stand. With greater stability, they progress to cruising, standing alone and ultimately

walking alone. While this timeline is a widely recognized standard within the field, Adolph and

Robinson [1] emphasize that motor learning remains highly flexible. Infants may skip stages, reach

milestones at different times or adopt alternative strategies based on environmental and cultural

factors. While this curriculum provides a structured template, it leaves some room for flexibility in

terms of exact orderings or permutations, which we aim to explore.

Our work thus seeks to incorporate both an expanding network - in a manner akin to PNNs - and
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a developmental curriculum. By adhering to the principle of starting small, we aim to define a more

structured pathway through the vast search space of learning to walk.

2.2. Learning to Walk: Previous Approaches in RL

Having established the theoretical foundations of our framework, we now turn to review existing

RL strategies for humanoid locomotion. Broadly, RL approaches can be grouped into three main

paradigms: hierarchical frameworks, reference-based end-to-end frameworks and reference-free

end-to-end frameworks.[7] We provide an overview of these paradigms, illustrating their respective

trade-offs and their relationship to our own approach.

2.2.1. Hierarchical Frameworks: Hierarchical RL decomposes the control problem into at least

two levels: a high-level policy responsible for long-horizon planning and a low-level policy that

executes detailed motor commands.[7] This separation is particularly effective in locomotion

tasks, where the high-level controller might select gait types or footstep plans while the low-level

controller handles joint-level dynamics. For example, Yang et al. [8] introduce a high-level policy

to modulate gait parameters (such as stepping frequency) while a low-level convex model predictive

controller maintains balance. They find that gait switching (walk to trot to fly-trot) emerged

naturally at different speeds, achieving significantly improved efficiency compared to manually

engineered transitions. Similarly, Singh et al. [9] combines a high-level footstep planner with a

learned policy that outputs joint-angle targets. Trained under a curriculum of increasing terrain

complexity, the resulting controller demonstrates robust, goal-directed walking, stair-climbing and

backward motion. Despite their effectiveness, hierarchical frameworks often require significant

human-designed scaffolds, such as external footstep planners or carefully defined model predictive

controllers. This reliance on engineered structures can limit flexibility and make it more difficult to

integrate new tasks or environments.[7]

Andreas et al. [10] offers a slightly more flexible alternative by introducing symbolic “sketches”

that decompose tasks into learnable subpolicies. These sketches encourage the system to discover

and reuse shared structures across tasks, supporting generalization and transfer to new tasks. While

6



our implementation differs - namely we avoid explicit symbolic scaffolding and tackle the more

complex challenge of humanoid locomotion - the underlying motivation is similar: to structure

learning in a way that encourages progressive skill acquisition and reuse of prior knowledge. Thus,

our approach continues to move away from the engineering overhead of hierarchical approaches,

instead targeting a simpler and more unified end-to-end solution. While our use of a curriculum

may bear superficial resemblance to hierarchical frameworks, our method learns a single unified

policy throughout training, rather than dividing control across separate high and low-level modules.

2.2.2. Reference-Based End-to-End Frameworks: Reference-based RL approaches rely on

reference trajectories, often from motion capture data, to guide the agent via imitation learning.

For instance, Li et al. [11] employ imitation learning to train a joint-level PD controller for a wide

range of bipedal skills - including walking, running and jumping - in both simulation and the real

world. By training on a three-stage curriculum of single-task imitation, task randomization (varying

speed or height targets) and dynamics randomization, they enable robust transfer from simulation

to the real world. A second example by Xu et al. [12] introduces a multi-objective reinforcement

learning framework that enables agents to imitate partial-body motions from multiple reference clips

simultaneously. Rather than learning a full-body imitation policy, the method employs multiple

discriminators, each focusing on a subset of joints. This structure allows the agent to learn modular,

composable behaviors - such as walking while aiming - while jointly optimizing task-specific

objectives. In a similar setup, Peng et al. [13] trains a latent skill-conditioned low-level policy on

large unstructured motion datasets. A high-level controller then learns to steer the agent through

this latent space, enabling composition of complex behaviors for competitive sport tasks - including

running, striking and recovering from falls - without needing specifically labeled or segmented

motion clips.

Overall, reference-based RL approaches reliably produce high-quality, human-like motion and

excel at complex motor behaviors. However, they depend heavily on curated motion datasets and

engineered pipelines, which can confine resulting policies to specific gaits, restrict its ability to

explore a broader range of motions and limit adaptability in responding to unforeseen environmental
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changes.[7] By contrast, our approach targets fully reference-free locomotion.

2.2.3. Reference-Free End-to-End Frameworks: Reference-free methods discover locomotion

through trial and error in the absence of motion-capture trajectories, relying solely on reward

signals and raw environment interactions. For instance, Ha et al. [14] address the complexities of

real-world quadrupedal locomotion by automating resets and incorporating safety constraints. They

train multiple tasks - forward/backward walking and turning - in a single run, using a scheduler

that decides which directional task to attempt so that the robot remains in the training region.

Additionally, they introduce roll and pitch limits to prevent falls. This combination drastically

reduces the need for human intervention; after a few hours of on-board RL, the robot learns robust,

multi-directional gaits with minimal resets.

Focusing more on simulation, Tao et al. [15] address the notoriously difficult get-up task for

humanoids, where standard methods often yield unnatural or erratic behaviors. The authors propose

a three-stage training pipeline: use a strong agent to discover viable get-up strategies, apply a

strong-to-weak torque curriculum to refine low-energy variants of these motions and finally, perform

slow-motion imitation of learned behaviors. The final policy, trained via Soft Actor-Critic, exhibits

robust, more natural get-up motions and generalizes across body configurations, including agents

with missing limbs or casts.

In another vein, purely mechanical objectives can also yield more natural movements. Fu et al.

[16] use a reward function that punishes net torque usage and provides a small bonus for forward

progress. They show in simulation and on a real-world quadruped that this approach yields canonical

gaits (walk, trot, gallop) at different speeds, consistent with real animals. These emergent gaits

require no pre-programmed sequences or demonstrations and extends robustly to irregular terrains.

Alongside energy, several recent works focus on enforcing symmetry in an effort to produce

more natural motion. Yu et al. [17] combines a symmetry-enforcing term in the policy loss with an

energy-minimizing reward. A novel “assistance“ curriculum is also introduced, wherein an external

force is gradually removed as training progresses, preventing the agent from collapsing or stumbling

early on. By the end of training, the agent achieves low-energy, left-right symmetric locomotion
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across both biped and quadruped morphologies. A more comprehensive survey, Abdolhosseini et al.

[18], compares four different approaches to enforcing symmetry: data augmentation (duplicating

experiences with mirrored states/actions), an auxiliary symmetry loss in the network objective,

direct phase-based reflection (splitting the gait cycle and reusing it mirrored) and a specialized

mirroring architecture. They evaluate these methods across various locomotion tasks, finding that

auxiliary-loss symmetry is the most consistently beneficial in achieving strong final performance

and near-symmetric motion, though each approach has unique trade-offs.

Reference-free learning enables the exploration of novel solutions that might not be discovered

through reference-based learning. However, it also tends to require extensive and time-consuming

training while potentially struggling to master more complex tasks.[7] Furthermore, these ap-

proaches often rely on careful reward shaping (torque penalties, symmetry losses) or additional

environmental scaffolds (external force assistance). In other cases, large-scale computational bud-

gets also play a critical role in achieving state of the art results. Wang et al. [19] is a notable example,

albeit in self-supervised RL, where massive model capacity dramatically boosts performance and

leads to emergent behaviors, albeit at extremely high computational cost.

We position our work within the reference-free paradigm, deliberately avoiding reliance on motion

capture data or the engineering overhead typical of reference-based and traditional hierarchical

methods. However, our method departs from much prior reference-free research by pursuing a

dual strategy of a developmentally grounded curriculum and an expanding network. We forgo

heavy reward engineering - such as explicit symmetry or energy terms - and instead lean on the

structure provided by developmental constraints to simplify early learning. While some prior work

incorporate partial curricula (torque scaling, progressive terrain difficulty), ours is uniquely inspired

by human developmental milestones and coupled with incremental expansions of network capacity.

Our aim is to achieve sample-efficient humanoid locomotion with stable, human-like gaits without

requiring either large-scale training infrastructure or meticulously shaped reward functions.
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2.3. Algorithms

Proximal Policy Optimization (PPO) is an on-policy policy-gradient algorithm that offers a favorable

balance of conceptual simplicity and strong empirical performance on continuous-control tasks.

PPO alternates between collecting on-policy trajectories using the current policy and optimizing a

clipped surrogate objective that constrains how much that policy can deviate from the old policy.[20]

Concretely, PPO maximizes the following clipped surrogate objective:

LCLIP(θ) = Et
[
min

(
rt(θ)Ât , clip(rt(θ),1− ε,1+ ε) Ât

)]
where the probability ratio rt(θ), the estimated advantage Ât and the temporal difference residual

δV
t are defined as:

rt(θ) =
πθ (at |st)

πθold(at |st)
, Ât =

∞

∑
l=0

(γλ )l
δ

V
t+l, δ

V
t = rt + γVφ (st+1)−Vφ (st)

In complex environments, PPO can be less sample-efficient than off-policy algorithms such

as Soft Actor-Critic (SAC), which exploit maximum-entropy objectives and replay buffers for

better exploration.[7] Nonetheless, PPO remains popular due to its ease of use and flexibility.

Our hope is that the dual strategy of a curriculum and expanding network can partially mitigate

PPO’s inefficiencies by simplifying early subtasks and aligning network capacity with emerging

complexities. If successful, this would preserve PPO’s practical advantages (on-policy updates,

stable hyperparameter tuning) while narrowing the performance gap with more sophisticated off-

policy methods.

3. Approach

To address the challenges outlined in previous sections and exploit the potential benefits of impos-

ing developmental constraints, our overarching framework leverages two novel strategies: (1) a

structured curriculum based on developmental milestones and (2) a progressively expanding neural
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network. This semester, each idea was explored largely in isolation as we tested feasibility, with

plans to build upon this work in the future.

3.1. Curriculum Inspired by Developmental Milestones

Our first strategy mirrors the motor development timeline observed in human infants, where simpler

phases (prone or crawl) naturally precede more advanced behaviors (standing or walking). Rather

than treating locomotion as a single monolithic challenge, we decompose it into subtasks of

increasing difficulty, each focusing on simpler, incremental components of motor control. Our

curriculum is strongly inspired by the developmental timeline outlined in Figure 1. In principle,

splitting locomotion into subtasks reduces the degrees of freedom - and therefore the exploration

complexity - required in early stages. An agent can thus first learns basic stability and partial

weight-bearing before tackling the more challenging upright stance. This approach aims to foster

skill reuse and minimize catastrophic forgetting when transitioning between tasks, in accordance

with curriculum learning literature.

Figure 1: Developmental Motor Milestone Chart [1]

This semester, we first established performance baselines by training our model separately on

each individual subtask, providing reference points for rewards and training durations. Subsequently,

we began experimenting with various orderings of subtasks to investigate how task sequencing

impacts learning stability. We implemented threshold-based promotions, where the agent graduates
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to the next subtask once the current reward exceeds a threshold. Despite its conceptual appeal, our

preliminary experiments highlight some substantial challenges. Transitioning from, for instance, a

prone state to a supine or seated state fundamentally alters the agent’s initial posture and feasible

action sequences. From a conceptual standpoint, it thus shifts the underlying Markov Decision

Process, which can complicate the process of transferring knowledge across tasks. While certain

curriculum orderings improved transfer, we found that in most cases, our reward thresholds were

rarely met within the maximum training time allotted to each stage. In Section 4.4, we elaborate on

these challenges, offer a more detailed explanation of our results and propose potential solutions.

3.2. Expanding Network Capacity:

We also implement an expanding network strategy. Traditional RL approaches typically utilize

static - and sometimes enormous - network architectures, which often struggle to learn locomotion

efficiently, especially when forced to handle all complexities at once. Instead, we explore an

expanding network, gradually increasing representational capacity over time.

The principle of starting small suggests that limited early capacity may help humans master

simpler behaviors first, without being overwhelmed by complex tasks. As complexity increases, the

brain “expands” its effective capacity, building upon already-stabilized representations. Translating

this idea to RL, we initially train a smaller policy network, then add layers or widen existing layers

to handle more demanding phases of the task. After expanding, we slow down the learning rate

of previous weights to prevent forgetting. While Rusu et al. [4] discuss “freezing” previous layers

altogether, we explore various learning rate decay factors in the range [0.1, 0.3, 0.5, 0.7, 0.9].

This semester, we ran systematic ablations on the standing task varying initial network size,

the expansion direction (width or depth) and the learning rate decay. While our tested expanding

networks lag behind static baselines in terms of final reward, these ablations offer insights into

potential levers to pull on in the future for further improvement, as detailed in Section 4.5.
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3.3. Toward A Unified Framework

Although each component was tested separately this semester, our ultimate objective is to merge

them into a single, cohesive training pipeline. In principle, as the agent progresses through

the curriculum, the network itself will scale up, leveraging earlier subtask knowledge without

overwriting it. Incorporating an expanding network may therefore help mitigate the challenge

of “switching” tasks and balance maintaining plasticity for learning new tasks while mitigating

forgetting. While key challenges still remain to be overcome in each setting, this semester’s work

offers valuable insights that will inform future work, in which we aim to continue refining the

curriculum and expansion protocols into a unified training pipeline.

4. Implementation

Below, we summarize our system design, environment details and experimental procedures for both

the curriculum and expanding-network experiments.

Figure 2: Implementation Overview

4.1. Environment Setup

We build on Gym’s MuJoCo-based HumanoidGetUp environment with the following modifications.[21]

• Initial Configurations: Each subtask (prone, supine, seated, crawl, knees, standing with boxes,

standing) uses a different joint configuration loaded from a keyframes file.
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• Observation/Action Spaces: Observations include joint angles, velocities, inertias and contact

forces. Actions are continuous joint torques.

• XML File: We use Gymnasium’s humanoid.xml file, which has 23 degrees of freedom. For the

standing with boxes task, we modify the file to include two boxes to be used for support.

• Reward Function: We adopt a minimal reward structure incentivizing an upright torso (via head

height) and penalizing control effort:

reward = wupright ×head_pos−wctrl ×∑(control)2

• Environment Preprocessing: We use vectorized environments. Observations and rewards are

normalized using the VecNormalize library from StableBaselines and wrapped with VecMonitor

for logging.

• Episode Termination: Triggered if an agent falls outside a valid z-range or reaches the maximum

episode length of 2000 steps. Valid z-ranges depend on on the goal height of the humanoid for

the task at hand. For laying down positions, there is no early termination for invalid z-ranges.

• Noise and Variation: We add small random perturbations to initial joint poses. For crawling or

kneeling, additional randomization in arm and knee angles encourages robustness.

4.2. Algorithms and Libraries

We use Proximal Policy Optimization (PPO) from StableBaselines3 (v2.5.0).[22] Our choice

of PPO is deliberate: its simplicity and stability make it a strong candidate for integration with our

developmental strategies. We hypothesize that, by introducing curriculum and capacity growth, we

may compensate for some of PPO’s sample inefficiencies. Training uses GPU for the policy and

CPU for MuJoCo simulation, with 8 parallel environments. We track progress via Weights & Biases

for logging, while hyperparameter tuning is conducted using Optuna.[23] [24]
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4.3. Baselines for Individual Subtasks

In order to establish the feasibility of learning each developmental stage in isolation, we trained

a series of single-task baselines using PPO. These tasks correspond to the potential stages of

our proposed curriculum: prone, supine, seated, crawl, knees, standing with boxes and standing.

Training and evaluating a policy on each subtask separately allows us to (1) confirm solvability with

sufficient timesteps and (2) establish performance thresholds for later curriculum experiments.

4.3.1. Hyperparameter Search with Optuna We conducted an initial hyperparameter search for

each subtask using the Optuna library.[24] Each search was comprised of 50 independent trials,

where each trial was trained for up to 1 million timesteps (and sometimes fewer for simpler tasks

such as prone, supine and crawl).

Table 1: Hyperparameter Search Space for Baseline Subtasks

Parameter Search Space
Learning Rate (α) Log-uniform in [10−5,10−3]

Number of Steps (nsteps) {1024, 1536, 2048, 2560, 3072, 3584, 4096}
Batch Size {32, 64, 128, 256}
Use SDE {True, False}
Discount Factor (γ) {0.95, 0.99}
Number of Epochs (nepochs) {1, 5, 10}
Entropy Coefficient {0.0, 0.005}
Use Weight Decay {True, False}; if True, log-uniform [10−5,10−2]

Architecture Scale {1, 2, 3, 4}

The policy network architecture depended on the integer parameter architecture_scale,

which scaled the first two hidden layers by multiples of 16, while the final layer was held fixed

at 16 ( [16, 16, 16], [32, 32, 16], etc.). All experiments were run with nenvs = 8 parallel environ-

ments to accelerate data collection. The remaining standard PPO parameters remained fixed at

reasonable, well-established values, including clip_range = 0.2, vf= 0.5, gae_lambda =

0.95 max_grad_norm = 0.5 and normalize_advantage = True . The best trial was chosen

according to mean final episode reward during final evaluation across 5 episodes after training.
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4.3.2. Extended Training Runs Once we identified the best hyperparameters for each subtask, we

conducted longer training runs with the aim of reaching near-convergence. Table 2 summarizes the

timesteps used for each subtask alongside the intended final goal position.

Table 2: Extended Training Timesteps for Each Subtask Baseline

Subtask Timesteps Goal / Final Position
Prone, Supine 2M Lift head/torso from floor
Seated 3M Maintain balance in a seated pose
Crawl 3M Push back to a kneeling position
Knees 3M, 8M Balance on knees, potentially initiate standing
Standing with Boxes 5M Balance upright with box assistance
Standing 10M Maintain upright stance without support

4.3.3. Monolithic Prone → Standing Baseline As a final comparison, we experimented with a

single-task environment that starts the agent in a prone position and asks it to reach a stable standing

pose. Despite extending training to 10 million timesteps, the agent could not reliably move out of

the prone position. Late in the semester, we introduced Random Network Distillation (RND) as an

intrinsic reward signal to encourage exploration.[25] This vastly improved learning and will be a

useful addition to PPO to incorporate in future work.

4.4. Initial Curriculum Experiments

Inspired by the per-subtask successes of Section 4.3, we next explored a threshold-based curriculum.

In this setup, the agent begins training in one environment and progresses to the next subtask only

after surpassing a designated reward threshold based on the subtask baselines from the previous

section. This process continues sequentially through increasingly difficult subtasks until it reaches

the final standing task. The motivation is to gradually expand the agent’s state-space complexity

while building on prior capabilities.

We leveraged the best-performing hyperparameters for the standing baseline to remain consistent

with the final goal of upright balance, though we also experimented with using a larger hidden size

of 128 in addition to 32. For each curriculum step, the agent collects on-policy rollouts in the current
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subtask environment. We periodically evaluate the agent, and if its average episodic reward exceeds

a threshold (predetermined from single-task benchmarks), we switch the training environment to

the next subtask and continue. We also placed a maximum limit on training timesteps (8-10 million)

on any given intermediate stage, in order to ensure that the full training run could proceed. For the

final standing task, we expanded that timestep limit to 10-15 million. While the choice of threshold

was derived from the final performance of single-subtask runs, we also experimented with slightly

lower or higher thresholds to see if this would yield faster progression or greater stability.

Throughout the semester, we tested numerous permutations of the subtask order, primarily to

investigate whether certain transitions might be more natural than others. Table 9 details these

orderings, along with the architecture hidden size used. For each ordering, we also experimented

with different reward goals and levels of noise. While we originally intended to conduct more

rigorous testing (across architectures, random seeds and configurations), time constraints limited our

experimentation to merely an initial search. In the future, we intend to more robustly explore these

levers, in addition to the aforementioned addition of RND. We also intend to apply our expanding

network strategy, once finalized.

Table 3: Curricula Orders and Architectures Tested

Curriculum Order Architecture Hidden Size
Crawl → Knees → Standing with Boxes → Standing 32 and 128
Crawl → Knees → Standing 128
Knees → Standing 32 and 128
Prone → Crawl → Knees → Standing with Boxes → Standing 32 and 128
Prone → Supine → Seated → Knees → Standing 32 and 128
Standing → Standing with Boxes → Knees → Crawl (reverse) 32
Supine → Knees → Standing 32 and 128
Supine → Seated → Knees → Standing with Boxes → Standing 32 and 128
Prone → Crawl → Knees → Standing 32 and 128
Supine → Seated → Knees → Standing 128
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4.5. Network Expansion Experiments on Standing Task

In addition to our static-architecture baselines, we conducted a large suite of experiments to

investigate whether progressively expanding the policy network could improve learning efficiency

for the standing task. We focused on standing alone because we lacked a reliable “prone to standing”

baseline, as dicussed above.

4.5.1. Expansion Protocol and Hyperparameters Each experiment begins with a smaller network,

which is trained for a fixed number of timesteps. Subsequently, the network expands either by

increasing the depth (adding a new layer) or the width (increasing the size of existing layers).

This process repeats until the target architecture is reached. For example, in a depth expansion

from [32, 32] to [32, 32, 32] and finally [32, 32, 32, 32], one layer is added at each step. In a width

expansion, units in each layer double in size at each step (ex: [4, 4, x] to [8, 8, x], [16, 16, x] and

so forth). Note that due to the implementation of our expanding network, the last layer is always

held constant. Each phase of the expanded network trains for double the number of timesteps as

the previous. For depthwise expansions, this consisted of [1M, 2M, 4M] timesteps for a total of 7

million. For widthwise expansions, this consisted of [0.25M, 0.5M, 1M, 2M, 4M] timesteps for a

total of 8 million.

After expansion, we preserve old weights by slowing down the learning rate on previous layers.

In particular, we varied the decay factor among {0.1, 0.3, 0.5, 0.7, 0.9}. The goal is to see if

reducing the learning rate upon expansion mitigates destructive interference - or forgetting - when

new parameters are introduced. We reuse the best PPO hyperparameters identified in our single-

task standing baseline, ensuring that only the network architecture and the learning rate decay

factor change. We compare these final expanded models against static baselines of identical final

architecture to assess whether incremental growth offers advantages in sample efficiency or final

performance.

4.5.2. Static Architecture Baselines Before testing expansion, we established comprehensive

static baselines with 2, 3 or 4 hidden layers of various widths and output layer size. We train each

architecture on 5 seeds, thus yielding 150 trials total. These baselines provide a reference when
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evaluating the performance of expanded networks that end up with, for instance, (64,64,64) or

(128,128,32) as their final shape.

Table 4: Static Architecture Baselines

2 layers 3 layers 4 layers

(4,4) (4,4,4) (4,4,4,4)

(8,8) (8,8,8) (8,8,8,8)

(16,16) (16,16,16) (16,16,16,16)

(32,32,16) (32,32,32,16)

(32,32) (32,32,32) (32,32,32,32)

(64,64,16) (64,64,64,16)

(64,64,32) (64,64,64,32)

(64,64) (64,64,64) (64,64,64,64)

(128,128,64) (128,128,128,64)

(128,128) (128,128,128) (128,128,128,128)

4.5.3. Depthwise Expansion Experiments For depthwise expansion, we tested two principal

starting shapes, adding one layer at each step, as detailed in Table 5. Each path required 5×5 = 25

trials (5 seeds × 5 learning rate decays), for a total of 50 trials. We compared the final expanded

networks with their static counterparts trained from scratch.

Table 5: Depth Expansion Paths

Expansions

[32, 32] → [32, 32, 32] → [32, 32, 32, 32]

[64, 64] → [64, 64, 64] → [64, 64, 64, 64]

4.5.4. Width Expansion Experiments For width expansion, we systematically increased layer

sizes, doubling at each stage, until reaching a target width. We keep the output layer fixed but test

various sizes. In Table 6, we list the paths tested, each evaluated under 5 seeds and 5 learning rate
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decays for a total of 25 runs per path, or 300 trials total. We then compare each final network to a

static baseline of the same dimensions.

Table 6: Width-based Expansion Paths

Expansions
[4, 4, 16] → [8, 8, 16] → [16, 16, 16] → [32, 32, 16] → [64, 64, 16]

[4, 4, 32] → [8, 8, 32] → [16, 16, 32] → [32, 32, 32] → [64, 64, 32]

[4, 4, 64] → [8, 8, 64] → [16, 16, 64] → [32, 32, 64] → [64, 64, 64]

[4, 4, 4, 16] → [8, 8, 8, 16] → [16, 16, 16, 16] → [32, 32, 32, 16] → [64, 64, 64, 16]

[4, 4, 4, 32] → [8, 8, 8, 32] → [16, 16, 16, 32] → [32, 32, 32, 32] → [64, 64, 64, 32]

[4, 4, 4, 64] → [8, 8, 8, 64] → [16, 16, 16, 64] → [32, 32, 32, 64] → [64, 64, 64, 64]

[8, 8, 64] → [16, 16, 64] → [32, 32, 64] → [64, 64, 64] → [128, 128, 64]

[8, 8, 128] → [16, 16, 128] → [32, 32, 128] → [64, 64, 128] → [128, 128, 128]

[8, 8, 8, 64] → [16, 16, 16, 64] → [32, 32, 32, 64] → [64, 64, 64, 64] → [128, 128, 128, 64]

[8, 8, 8, 128] → [16, 16, 16, 128] → [32, 32, 32, 128] → [64, 64, 64, 128] → [128, 128, 128, 128]

4.6. Evaluation Metrics

To comprehensively assess our two strategies, we utilize the following metrics during evaluation.

For our curriculum experiments, we focus mainly on final evaluation reward, sample efficiency

and qualitative video analysis. For the expanding network experiments on the standing task, we

additionally consider center of mass stability, energy expenditure and wall clock training time.

• Final Evaluation Reward: We record the episodic return after training converges, averaging

over five evaluation episodes. Higher rewards correlate with maintaining an upright posture and

minimizing control costs.

• Sample Efficiency: We measure how many timesteps each method requires to reach the above

reward. This indicates whether expansion strategies can accelerate early learning relative to static

counterparts.
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• Wall-Clock Time: Larger or deeper networks can require more computation per update. We

compare total training time across models, noting that our expanding network strategy might

require the same number of timesteps but run faster than a static architecture trained at full size.

• Energy Expenditure: We calculate per-timestep energy usage with the following formula:

Avg. Energy per Timestep =
∑ |joint_torques× joint_velocities|∆t

Total Timesteps
.

• COM Stability: We approximate stability by measuring the agent’s center of mass (COM)

relative to its feet. A larger COM distance indicates less stable posture and an increased likelihood

of falls.

Avg. COM Stability =
1
T

T

∑
t=1

∥COMxy(t)−FootCenterxy(t)∥.

• Training Curves: We log training curves (reward vs. timesteps) for each seed in Weights and

Biases. These curves are useful for understanding how and to what extent the model retains

previously learned knowledge after each expansion - or forgetting.

• Qualitative Video Analysis: Finally, we record videos to qualitatively assess final performance.

5. Evaluation

In this section, we detail the results of the baseline subtasks, our initial exploration of the curriculum

and our expanding network ablation studies on depth and width.

5.1. Baselines for Individual Subtasks

Table 7 summarizes the best hyperparameters found via a 50-trial Optuna search for each of the

seven subtasks, along with the final evaluation rewards and qualitative “video” observations. While

we also searched over the use_SDE parameter, all subtask searches resulted in False. Even after

relatively short trials (not exceeding 1 million), all seven subtasks demonstrate substantial progress

towards their subtask goals.
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Table 7: Results of 50 Trial Optuna Search on Subtask Baselines

Pose Steps LR N steps Batch size γ N epochs Ent coef Weight decay Arch scale Reward Video

Prone 0.3M 1.00×10−4 3072 128 0.95 5 0.005 7.88×10−4 1 772.71
Lifts head

and torso

Supine 0.2M 2.29×10−5 2048 64 0.99 10 0.005 1.68×10−3 4 1044.59
Sits up

using arms

Seated 0.75M 6.37×10−4 3072 128 0.95 10 0 8.93×10−4 1 1404.50
Holds

seated pose

Crawl 0.3M 6.36×10−4 2560 32 0.99 1 0 0 1 955.20
Sits back

on knees

Knees 1M 4.59×10−5 1536 32 0.95 10 0.005 1.13×10−5 2 1760.00
Balances on

knees

Standing

boxes
1M 2.58×10−4 2560 128 0.99 10 0.005 6.19×10−4 4 2377.00

Stands with

boxes

Standing 1M 1.59×10−4 3072 64 0.99 10 0.005 3.33×10−4 2 1046.49
Falls to

knees

Reward is calculated by averaging over 5 evaluation episodes after completing training. Arch scale is a constant that we

multiply by 16 to get the hidden size of our architecture, ie [16∗ x,16∗ x,16].

5.2. Extended Training Runs on Subtasks

Although the prior subtasks trials in Table 7 demonstrated promising results with relatively short

training durations, we also conducted longer training runs using the best hyperparameter config-

urations obtained from this search. Table 8 details the final evaluation rewards and qualitative

observations for each subtask, trained anywhere from 2 million to 10 million timesteps depending

on the complexity of the task. Most tasks benefited from longer training time but with varying

degrees of success. For example, the crawl subtask improved from a reward of 955.20 at 0.3M

timesteps to 1315.90 at 3M timesteps. Similarly, the knees subtask also increased between the

initial 1M and final 8M run, though interestingly, the intermediate 3M run began trying to stand

more, fell more frequently and ultimately had a lower intermediate reward. However, the prone,
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supine and standing with boxes subtasks decreased in reward, though all still managed to perform

the desired subtask goal at least for a subset of the evaluation episodes’ length. We show the prone

rewards across training as an example in Figure 3. Figure 4 shows the standing rewards across

training, showing a not quite stable but at least overall increasing trend over time. Note that because

we did not average across multiple training seeds, the graphs are more unstable.

Table 8: Extended Training Run Results on Subtasks

Start Position Timesteps Final eval reward Video description

Prone 2M 225.96 Raises torso, kicks legs, ends with head slightly lifted

Supine 2M 365.61 Violently sits up, overshoots and leans forward

Crawl 3M 1315.90 Pushes back to kneel; attempts upright kneel

Seated 10M 1436.58 Remains seated, leans on leg to lift head higher

Knees 3M 232.34 Balances on knees, tries to stand, then falls

Knees 8M 1967.44 Maintains upright kneel; no stand attempt

Standing boxes 5M 1939.62 Uses boxes for balance, slides down and occasionally falls

Standing (hidden 32) 10M 1750.86 Falls to knees and maintains balance

Figure 3: Mean Evaluation Reward Across Training
for Prone Subtask (2M)

Figure 4: Mean Evaluation Reward Across Training
for Standing Subtask (10M)
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5.3. Monolithic Prone → Standing Baseline with RND

Establishing a monolithic prone → standing baseline is a useful reference point for our future

curriculum experiments, in order to see if utilizing a curriculum improves sample efficiency and

motion quality. However, as shown in Figure 3, our prone baseline was unable to move out of the

prone position and even deteriorated in reward over longer training. Thus, late in the semester,

we also experimented with applying RND, in an effort to encourage our agent to explore more.

As shown in Figure 5, adding RND enabled much more exploration and resulted in much better

training curves. Based on qualitative analysis of videos, the agent was able to reach a near-sitting

upright position by 10M timesteps and a fully upright sitting position by 15M timesteps. One

noticeable downside to this approach, however, is that it dramatically increased the wall clock time

of training, taking nearly 22 hours to train. However, we suspect that we may be able to update the

RND network less frequently (or in larger batches) and thus bring down the computational cost.

While the agent still fell short of fully standing, these results point to RND as a useful tool to help

encourage exploration, one we will certainly utilize in the future.

Figure 5: Monolithic Prone to Standing Baseline with RND
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5.4. Initial Curriculum Experiments

Table 9: Initial Curricula Experiments Results By Reward and Length of Stages

Curriculum Hidden S1 Rew/Steps S2 Rew/Steps S3 Rew/Steps S4 Rew/Steps Final Standing Rew/Steps

K → S 32 38 / 8M – – – 78 / 12M

K → S 128 23 / 8M – – – 81 / 12M

SU → K → S 32 −208 / 8M 17 / 8M – – 68 / 13M

SU → K → S 128 800 / 4.5M 11 / 8M – – 106 / 13M

C → K → S 128 10 / 8M 31 / 8M – – 100 / 13M

P → C → K → S∗ 32 459 / 1M 530 / 2M 44 / 2M – 938 / 10M

SU → SE → K → S 128 −18 / 8M 23 / 8M 31 / 8M – 96 / 13M

C → K → SB → S 32 408 / 1M 39 / 8M 1520 / 6.5M – 90 / 13M

C → K → SB → S 128 14 / 8M 221 / 5M 90 / 8M – 94 / 13M

S → SB → K → C∗∗ 32 81/10M 74 / 10M 40 / 10M – 16 / 15M

P → C → K → SB → S 32 358 / 0.5M 471 / 3M 43 / 8M 101 / 8M 1570 / 13M

P → C → K → SB → S 128 454/0.5M 433 / 1M 33 / 8M 33 / 8M 1618 / 13M

P → SU → SE → K → S 32 404 / 0.5M −8.8 / 8M 526 / 8M 55 / 8M 281 / 13M

P → SU → SE → K → S 128 457 / 0.5 M −132 / 8M 310 / 8M 27 / 8M 172 / 13M

SU → SE → K → SB → S 32 −211 / 8M 494 / 8M 24 / 8M 63 / 8M 63 / 13M

SU → SE → K → SB → S 128 580 / 3M 331 / 8M 11 / 8M 101 / 8M 114 / 13M
* For this run, we restricted intermediate stages to a maximum of 2M timesteps.

** For this run, we tried a reverse curriculum, beginning with the standing task and ending in prone.

We performed a small set of curriculum experiments, summarized in Table 9. Each row corresponds

to a particular ordering of subtasks and a chosen network width (“Hidden”). We use abbreviated

labels for each subtask: P for prone, SU for supine, SE for seated, C for crawl, K for knees, SB

for standing with boxes and S for standing. The table columns indicate the average final reward

on the current task and total training steps for each stage in the curriculum (“S1 Rew/Steps,” “S2

Rew/Steps,” etc.), as well as the final stage standing performance (“Final Standing Rew/Steps”).
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Because some curriculum orderings are comprised of fewer stages than others, some entries in

rows are left blank, designated by a dash. We set a maximum number of timesteps for each stage

(8M for intermediate stages, 12-15M for the final standing task). If the agent failed to surpass a

predetermined reward threshold (based on subtask results) within this time limit, we moved on to the

next subtask. This was largely to ensure that training could finish within 24 hours, but we found that

varying this upper limit had an impact on performance. Because these runs were computationally

expensive, we did not exhaustively vary hyperparameters architectures, maximum timesteps or

reward thresholds, and we also did not run across sufficient seeds. Even so, our preliminary results

reveal several noteworthy trends:

5.4.1. Task Ordering and Transfer

Our experiments tentatively suggest that less time spent on intermediate tasks correlates with better

increased performance on the final standing stage. Several trials show that once a moderate reward

threshold is reached - or once the stage times out on shorter maximum time limits - moving on to

the next subtask sooner tends to yield higher rewards. We visualize this trend in Figure 6, which

plots the final standing reward against the average length of intermediate stages. One explanation

is that prolonged training on a simpler posture may reduce the policy’s plasticity for future tasks,

effectively overfitting the agent to an early posture. In contrast, switching tasks earlier preserves

more flexibility for adapting to increasingly difficult poses.

However, the duration of these intermediate stages also reflects the effectiveness of the curriculum

ordering itself. A well-structured sequence of tasks should enhance transfer, thus requiring fewer

timesteps per stage. The importance of curriculum ordering is exemplified by our reverse curriculum

trial, which progresses in the opposite direction of the timeline defined by developmental psychology

with a curriculum of S → SB → K → C. This trial produced the lowest final standing reward of

16 while requiring 45M timesteps in total, indicating that an “unintuitive” task sequence hinders

efficient transfer.

Together, these results highlight a key tradeoff between retaining enough plasticity to learn new

tasks and avoiding forgetting of old ones. When an agent fails to effectively transfer knowledge from
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earlier stages, the curriculum can become more of an obstacle than a catalyst for learning. From

these observations, we identify three key directions for future work. First, curriculum ordering has a

strong impact on both final performance and sample efficiency and should be more rigorously tested.

Second, reward thresholds should continue to be refined. While we based our reward thresholds

on the baseline subtask results, they may be too high in a curriculum setting, causing the length of

intermediate stages to increase and negatively impact final performance. Finally, the overall need to

improve transfer suggests incorporating our expanding network, which would enable the model to

increase capacity as it encounters new task while still preserving knowledge acquired in previous

stages.

Figure 6: Final Standing Performance By Average Length of Intermediate Stages

5.4.2. Network Architecture

As illustrated in Figure 7, widths of 128 slightly outperformed widths of 32, implying that a slightly

bigger model might be able to exploit increased representational power to better handle a multistage

curriculum. The performance difference is not particularly large, but continuing to vary architecture

sizes may be useful in the future. Furthermore, throughout all of our curriculum experiments - from

baseline subtasks to these curriculum ordering trials - we utilized a final output layer size of 16.

We suspect that this bottleneck may limit the policy’s expressiveness. From an information-theory

standpoint, a smaller output layer constrains the amount of information the network can pass from
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the final hidden layer to the policy distribution parameters, thus reducing the ability to represent

nuanced control strategies. Put simply, by restricting the output space of our policy, we forced

a compression of the action space to just 16 outputs. In the future, we plan to experiment with

increasing the output dimensionality to test whether this improves our curriculum results.

Figure 7: Final Standing Rewards by Width of Architecture

5.4.3. Negative Rewards Finally, we observe a few instances in which negative rewards reflect

inactivity or poor early policies, particularly in the supine position. In these scenarios, the agent’s

lack of effort (and accumulating control costs) leads to net negative returns. We find this particularly

surprising in trials where the supine position was the first stage, as there is no potential effect of poor

transfer in these cases. However, we noted in the above section (Table 1 vs Table 2) that the supine

subtask reward regressed over longer training times. In hindsight, it appears that using too high of

an initial reward threshold, especially considering we used hyperparameters tuned for the standing

task, likely caused prolonged training in the supine stage, causing rewards to regress dramatically.

This suggests future work in continuing to refine reward thresholds and incorporating RND, which

greatly improved learning stability, as discussed in Section 5.3.
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5.5. Expanding Network - Depthwise Ablation Studies

5.5.1. (32, 32) → (32, 32, 32) → (32, 32, 32, 32) Expansion Path

Table 10 highlights the key quantitative findings of our depthwise expansion. Notably, the baseline

- which trains a (32, 32, 32, 32) network from scratch for 10 million timesteps - achieves the highest

final reward at 1953.12. In contrast, all of the expanding networks reach significantly lower final

rewards ranging from 288.94 to 814.85. A closer look at the average distance between the center of

mass and the center of the humanoid’s feet in Figure 8 further underscores the performance gap.

The baseline’s COM displacement remains consistently small (around 0.1–0.2m), indicating better

upright posture and control. By contrast, all expanding runs exhibit rapid, early spikes in COM

displacement (to 0.4–0.5m or more), which suggests frequent falls early on in evaluation episodes.

Table 10: Comparison of (32,32)→ (32,32,32)→ (32,32,32,32) sized expanding network to a
static (32,32,32,32) sized baseline. All numbers are means over the five training seeds, upon each
of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ Energy∗∗ Final Evaluation Reward

Baseline - 5.98 10M 0.148 18.16 1953.12

Expanding 0.1 2.98 [1M, 2M, 4M] 0.461 8.42 288.94

Expanding 0.3 2.97 [1M, 2M, 4M] 0.446 4.04 305.13

Expanding 0.5 3.07 [1M, 2M, 4M] 0.423 6.29 814.85

Expanding 0.7 3.02 [1M, 2M, 4M] 0.531 6.99 497.83

Expanding 0.9 2.97 [1M, 2M, 4M] 0.453 5.69 401.88

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.

** Calculated as the average energy expenditure per evaluation timestep.

Due to the poor performance of the expanding networks, we cannot reliably compare energy

expenditures, as the former often remained motionless after falling. We also cannot reliaby compare

wall clock time, as the expanding networks exhibit shorter episode durations during training due to

more frequent falls and poorer overall performance. However, given that these networks are not at
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full size for the entire duration of training, we suspect that even with better performance, expanding

networks would still consume less wall clock time than full sized static networks.

Among the expanding runs, the best expanding network used a learning rate decay of 0.5 to

obtain the highest final reward of 814.85 and the lowest COM distance of 0.423. Figures 9–11

depict the training curves across the three expansion stages for this best-performing expansion, all

averaged over 5 seeds. During the first stage, the mean episodic reward rises to roughly 120 by

the end, suggesting that the initial (32, 32) network learns a rudimentary policy within the first

million steps. After introducing a third layer (making the network (32, 32, 32)), we see an increase

in reward up to around 160. This improvement reflects the newly added capacity, though the policy

remains well below baseline performance at the same number of steps. In Figure 11, the network

expands to its final size of (32, 32, 32, 32). By around 3.5-4M timesteps at this stage (or 7.5-8M

total), rewards climb further, surpassing 300 and briefly spiking toward 500. However, even at the

conclusion of the final stage, the policy’s stability is limited compared to the baseline, as shown in

Figure 12, which reaches a reward around 1500 by 8M timesteps and a reward of 2000 by 10M

timesteps. In essence, depthwise expansion lags behind a fully trained, static network of the same

final size.

Figure 8: Comparison of the Average Distance between the COM and Center of Feet Per Timestep
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Figure 9: Mean Episodic Reward over the first ex-
pansion stage for the expanding network with a
learning rate decay factor of 0.5. Averaged over 5
training seeds.

Figure 10: Mean Episodic Reward over the second
expansion stage for the expanding network with a
learning rate decay factor of 0.5. Averaged over 5
training seeds.

Figure 11: Mean Episodic Reward over the final
expansion stage. Averaged over 5 training seeds.

Figure 12: Mean Episodic Reward for the static
baseline. Averaged over 5 training seeds.

5.5.2. (64, 64) → (64, 64, 64) → (64, 64, 64, 64) Expansion Path

Table 11 outlines similar overall trends in a comparison between a (64, 64, 64, 64) static baseline to

expanding networks that grow from (64,64)→ (64,64,64)→ (64,64,64,64). The baseline trained

for 10 million timesteps attains the highest final reward of 1296, whereas all expanding variants

remain below 500. The average distance between the COM and the center of the humanoid’s feet is

again noticeably smaller for the baseline (0.273m), indicating a more stable, upright posture. In

comparison, the expansion COM displacements range from 0.396 to 0.546. Among the expansion,

an LR-decay factor of 0.7 yields the highest final reward (410.33). However, an LR-decay factor

of 0.1 yields the best COM stability. After qualitatively examining the accompanying videos, we
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can attribute this to the fact that the former manages to stand for slightly longer but ends in a more

sprawled out position, thus slightly increasing the reported COM metric but also increasing the

reward. Overall, larger networks appeared more challenging to train, both for static and expanding

architectures, as compared to Table 10.

Table 11: Comparison of (64,64)→ (64,64,64)→ (64,64,64,64) sized expanding network to a
static (64,64,64,64) sized baseline. All numbers are means over the five training seeds, upon each
of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ (m) Energy∗∗ (J) Final Evaluation Reward

Baseline - 5.4 10M 0.273 18.49 1296

Expanding 0.1 3.1 [1M, 2M, 4M] 0.396 11.48 241.31

Expanding 0.3 3.13 [1M, 2M, 4M] 0.425 8.73 319.06

Expanding 0.5 3.15 [1M, 2M, 4M] 0.439 9.44 345.37

Expanding 0.7 3.13 [1M, 2M, 4M] 0.506 6.289 410.33

Expanding 0.9 3.15 [1M, 2M, 4M] 0.546 11.98 336.23

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.

** Calculated as the average energy expenditure per evaluation timestep.

5.6. Widthwise Ablation Studies

5.6.1. (4, 4, 16) → (8, 8, 16) → (16, 16, 16) → (32, 32, 16) → (64, 64, 16) Expansion Path

Table 12 compares a static-width (64, 64, 16) baseline to expanding networks that grow from

(4,4,16) to (64,64,16) over 4 expansions, doubling the width of the first two layers and the length

of training for each phase. The baseline network achieves a high final reward of 1840, significantly

outperforming all expanding configurations, whose final rewards range between 168 and 289. The

baseline’s COM displacement is also far lower at an average of 0.288, indicating better stability

and less frequent falls, as compared in Figure 13. Among the expanding networks, a learning rate

decay factor of 0.1 yields the highest final reward, while a learning rate decay factor of 0.9 yields

the lowest.
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Table 12: Comparison of (4,4,16)→ (8,8,16)→ (16,16,16)→ (32,32,16)→ (64,64,16) expand-
ing network to a static (64,64,16) sized baseline. All numbers are means over the five training
seeds, upon each of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ (m) Energy∗∗ (J) Final Evaluation Reward

Baseline – 6.83 10M 0.288 12.354 1840.16

Expanding 0.1 2.24 [.25M, .5M, 1M, 2M, 4M] 0.718 0.001 288.894

Expanding 0.3 2.28 [.25M, .5M, 1M, 2M, 4M] 0.659 0.002 173.243

Expanding 0.5 2.29 [.25M, .5M, 1M, 2M, 4M] 0.783 0.001 254.409

Expanding 0.7 2.34 [.25M, .5M, 1M, 2M, 4M] 0.770 0.001 225.222

Expanding 0.9 1.88 [.25M, .5M, 1M, 2M, 4M] 0.771 0.003 167.710

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.

** Calculated as the average energy expenditure per evaluation timestep.

Figure 13: Comparison of the Average Distance between the COM and Center of Feet Per Timestep

5.6.2. (4, 4, 32) → (8, 8, 32) → (16, 16, 32) → (32, 32, 32) → (64, 64, 32) Expansion Path

In Table 13, the static baseline trained to 10M timesteps attains a final evaluation reward of 2327.47,

far surpassing any of the expanding network’s rewards, which range from 222 to 323. The baseline’s

COM displacement is just 0.117m on average. The expanding networks’ COM displacements range

between 0.612–0.763 m, and Figure 14 shows a clear spike early in evaluation, indicating falls.
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Table 13: Comparison of (4,4,32)→ (8,8,32)→ (16,16,32)→ (32,32,32)→ (64,64,32) expand-
ing network to a static (64,64,32) sized baseline. All numbers are means over the five training
seeds, upon each of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ (m) Energy∗∗ (J) Final Evaluation Reward

Baseline – 5.45 10M 0.117 19.472 2327.469

Expanding 0.1 2.55 [1M, 2M, 4M] 0.750 0.000 249.929

Expanding 0.3 2.26 [1M, 2M, 4M] 0.732 0.007 323.002

Expanding 0.5 3.02 [1M, 2M, 4M] 0.763 0.001 222.486

Expanding 0.7 2.50 [1M, 2M, 4M] 0.612 0.003 232.997

Expanding 0.9 1.82 [1M, 2M, 4M] 0.759 0.003 276.131

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.

** Calculated as the average energy expenditure per evaluation timestep.

Figure 14: Comparison of the Average Distance between the COM and Center of Feet Per Timestep

5.6.3. (4, 4, 64) → (8, 8, 64) → (16, 16, 64) → (32, 32, 64) → (64, 64, 64) Expansion Path

Table 14 shows a similar trend. The static baseline achieves a reward of 1339.34, compared to

121.32–273.90 for the expanding runs. The baseline’s average COM displacement is 0.408 m, re-

flecting moderate stability. All expanding variants exhibit higher displacement values (0.64–0.73m),
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again suggestive of less stable movement and more falls, as plotted in Figure 15. The best reward

among the expansions occurs at a learning rate decay of 0.7.

Table 14: Comparison of (4,4,64)→ (8,8,64)→ (16,16,64)→ (32,32,64)→ (64,64,64) expand-
ing network to a static (64,64,64) sized baseline. All numbers are means over the five training
seeds, upon each of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ (m) Energy∗∗ (J) Final Evaluation Reward

Baseline – 5.61 10M 0.408 13.077 1339.338

Expanding 0.1 1.95 [1M, 2M, 4M] 0.680 0.118 156.454

Expanding 0.3 2.13 [1M, 2M, 4M] 0.643 0.101 158.735

Expanding 0.5 1.88 [1M, 2M, 4M] 0.687 0.019 121.317

Expanding 0.7 2.23 [1M, 2M, 4M] 0.709 0.006 273.904

Expanding 0.9 2.95 [1M, 2M, 4M] 0.730 0.036 186.355

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.

** Calculated as the average energy expenditure per evaluation timestep.

Figure 15: Comparison of the Average Distance between the COM and Center of Feet Per Timestep

5.6.4. (4, 4, 4, 16) → (8, 8, 8, 16) → (16, 16, 16, 16) → (32, 32, 32, 16) → (64, 64, 64, 16)

As shown in Table 15, the static baseline achieves a final reward of 772, while the best expanding
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network achieves a final reward of 291 at a learning rate decay factor of 0.3. The baseline’s

average COM displacement is 0.445, as compared to ranges between 0.57 and 0.64 in the expanding

networks. Figure 16 demonstrates that falls occur within the first 250 timesteps of evaluation

episodes across expanding networks, while the baseline only significantly destabilizes between

500-1000 timesteps.

Table 15: Comparison of (4,4,4,16) → (8,8,8,16) → (16,16,16,16) → (32,32,32,16) →
(64,64,64,16) expanding network to a static (64,64,64,16) sized baseline. All numbers are means
over the five training seeds, upon each of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ (m) Energy∗∗ (J) Final Evaluation Reward

Baseline – 5.08 10M 0.445 5.787 771.981

Expanding 0.1 3.12 [1M, 2M, 4M] 0.568 0.004 163.599

Expanding 0.3 3.37 [1M, 2M, 4M] 0.633 0.011 291.353

Expanding 0.5 3.44 [1M, 2M, 4M] 0.598 0.007 262.198

Expanding 0.7 3.63 [1M, 2M, 4M] 0.637 0.001 148.454

Expanding 0.9 2.81 [1M, 2M, 4M] 0.608 0.023 180.662

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.

** Calculated as the average energy expenditure per evaluation timestep.

Figure 16: Comparison of the Average Distance between the COM and Center of Feet Per Timestep
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5.6.5. (4, 4, 4, 32) → (8, 8, 8, 32) → (16, 16, 16, 32) → (32, 32, 32, 32) → (64, 64, 64, 32)

As shown in Table 16, the static baseline achieves a final reward of 1031, while the best expanding

network achieves a final reward of 314 at a learning rate decay factor of 0.3. The baseline’s average

COM displacement is 0.461, as compared to ranges around 0.7 in the expanding networks. Figure

16 demonstrates that falls occur within the first 250 timesteps of the evaluation episodes across

expanding networks, while the baseline only significantly destabilizes between 500-1000 timesteps.

Table 16: Comparison of (4,4,4,32) → (8,8,8,32) → (16,16,16,32) → (32,32,32,32) →
(64,64,64,32) expanding network to a static (64,64,64,32) sized baseline. All numbers are means
over the five training seeds, upon each of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ (m) Energy∗∗ (J) Final Evaluation Reward

Baseline – 4.81 10M 0.461 8.578 1031.183

Expanding 0.1 2.64 [1M, 2M, 4M] 0.723 0.002 302.862

Expanding 0.3 2.23 [1M, 2M, 4M] 0.688 0.047 313.921

Expanding 0.5 2.52 [1M, 2M, 4M] 0.735 0.003 243.381

Expanding 0.7 2.45 [1M, 2M, 4M] 0.766 0.003 186.607

Expanding 0.9 2.24 [1M, 2M, 4M] 0.734 0.001 271.845

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.

** Calculated as the average energy expenditure per evaluation timestep.

Figure 17: Comparison of the Average Distance between the COM and Center of Feet Per Timestep
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5.6.6. (4, 4, 4, 64) → (8, 8, 8, 64) → (16, 16, 16, 64) → (32, 32, 32, 64) → (64, 64, 64, 64)

As shown in Table 17, the static baseline achieves a final reward of 1254, while the best expanding

network achieves a final reward of 269 at a learning rate decay factor of 0.3. The baseline’s average

COM metric is 0.418, as compared to ranges closer to 0.7 in the expanding networks, as illustrated

in Figure 18.

Table 17: Comparison of (4,4,4,64) → (8,8,8,64) → (16,16,16,64) → (32,32,32,64) →
(64,64,64,64) expanding network to a static (64,64,64,64) sized baseline. All numbers are means
over the five training seeds, upon each of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ (m) Energy∗∗ (J) Final Evaluation Reward

Baseline – 5.4 10M 0.418 12.080 1254.165

Expanding 0.1 2.31 [1M, 2M, 4M] 0.684 0.004 162.338

Expanding 0.3 1.86 [1M, 2M, 4M] 0.730 0.003 210.451

Expanding 0.5 1.85 [1M, 2M, 4M] 0.728 0.001 268.919

Expanding 0.7 2.27 [1M, 2M, 4M] 0.716 0.002 205.930

Expanding 0.9 1.88 [1M, 2M, 4M] 0.688 0.006 248.964

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.

** Calculated as the average energy expenditure per evaluation timestep.

Figure 18: Comparison of the Average Distance between the COM and Center of Feet Per Timestep
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Figure 19: Final Rewards Across Width Expansions

5.6.7. Analysis Across Width Expansions

Across the board, the baseline networks uniformly achieve higher mean rewards but also ex-

hibit wider confidence intervals than the best-expanding configurations, as shown in Figure 19.

Meanwhile, the expanding approaches display consistently lower but more stable rewards, seldom

exceeding the 300-400 range across all architectures.

When the network has four layers and a smaller last layer (16 instead of 64), the static baseline’s

advantage over the expanding approach narrows considerably. One explanation is that a smaller

output dimension effectively compresses the action space, reducing the complexity of the final

mapping from latent features to actions. In such a setting, incrementally adding width to earlier

layers via the expanding architecture may serve as a beneficial inductive bias: the policy is forced to

refine a lower-dimensional control strategy before scaling up its representational capacity. Unable

to leverage that same inductive bias, the baseline performance drops in comparison. In contrast,

when the last layer is large, the static baseline more readily exploits its capacity, leaving expanding

networks lagging in final reward. When the network is limited to three layers, its smaller overall

capacity makes the incremental benefits of expansion less apparent. In other words, if the baseline

itself is not excessively large, it can still optimize effectively over 10 million steps without “over-

whelming” capacity - making it harder for an expanding network to catch up. With four layers,

however, the baseline’s larger capacity can be harder to exploit immediately, while the expanding
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network’s staged growth helps prevent inefficient exploration in a high-dimensional parameter space.

Consequently, that staged approach begins to pay off more noticeably in the deeper architecture.

The results also suggest that moderate decays (0.3, 0.5) help expanding networks the most. Hence,

the synergy of four layers plus a moderate learning rate decay is where the expanding networks

show their clearest advantage. While there remains a substantial gap in performance between

the baselines and expanding networks, these results are still relatively impressive given that each

expanding network only trains for [0.25M, 0.5M, 1M, 2M, 4M] timesteps on each task. Across all

phases, this amounts to 8M timesteps in comparison to 10M for the baseline. Furthermore, at full

network size, the expansions only train for 4M timesteps, which may not be quite enough time for

larger sized networks to reach their full potential.

5.7. Comparing Depth vs Width Expansions

Figure 20: Comparison of Depth vs. Width Expansions

As shown in Figure 20, depth expansions achieve somewhat higher final rewards than width

expansions do, considering only the best learning rate decay configuration for each. For instance,

the Depth-32 expansion ultimately attains around 815 reward, whereas the width expansions

typically top out below 400. Regarding the gap between baseline and expansion performance, the

results are varied, with about half of the width expansions achieving a smaller difference compared

to the corresponding baseline than the depth expansions. Indeed, 4 layer based expansions (whether
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width or depth) tended to close the gap better than 3 layer width expansions in general, both in

terms of final reward and average COM distance. However, in every case, the static baselines still

outperform the expansions, suggesting much room for further refinement.

6. Conclusions and Pathways for Future Work

Our work explored two complementary strategies for humanoid locomotion: (1) a curriculum of

subtasks aligned with developmental milestones and (2) expanding networks that incrementally

grow in capacity, either in depth or width. Although neither approach fully solved the challenge of

learning to walk, or even learning to get up, our experiments reveal key insights into how we might

further refine and ultimately integrate these two strategies.

With respect to the curriculum, baseline policies for individual subtasks generally performed well

under shorter training but sometimes regressed with extended training time, especially for the prone

and supine positions. Incorporating RND mitigated this issue by enhancing exploration, dramati-

cally improving learning stability. When subtasks were combined into a multi-stage curriculum,

transferring knowledge across tasks proved challenging. A curriculum ordering of prone → crawl

→ knees → standing with boxes → standing showed the best transfer, resulting in lower training

time intermediate subtask and higher final performance. In general, trials that transitioned between

tasks earlier (either via more modest reward thresholds or lower time limits) performed better than

trials with longer training on each stage, likely because the model did not overfit to previous tasks.

In the future, we aim to more systematically tune reward thresholds and curriculum orderings, and

we see significant promise in incorporating RND to enhance exploration across all tasks.

With respect to the expanding network, depthwise and widthwise expansions lagged behind static

baselines trained at final capacity from the start. However, moderate learning-rate decay factors

seemed to improve expansion performance, and a more extensive search of this hyperparameter

space may help close this gap. We also plan to run future experiments with longer training times

and perhaps explore varying the length of each phase. We suspect that 8 million timesteps may

not be sufficient to evaluate full learning potential, and there may also be benefits in changing
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the ratio of timesteps on each phase from a simple doubling formula. While we initially planned

to evaluate energy expenditure alongside reward and COM displacement, the frequent early falls

among expanding networks made this metric less meaningful, though they remain an important

consideration for future work. Likewise, it is difficult to evaluate the wall clock savings of expanding

networks, given that their lower performance inevitably lowered the mean episode length of training

as compared to the more successful baselines. However, given that expanding networks train at

smaller capacity in early phases, we expect to still see improvements in wall clock time in the future.

Finally, across all of our experiments, the size of the output layer significantly affected perfor-

mance, as using a smaller size effectively compressed the action space and created an information

bottleneck. While our width-wise expanding networks seemed better able to handle this challenge,

we plan to scale up output layers in the future. In particular, this may help improve performance for

the curriculum where our policy may need to be more expressive.

Ultimately, our chief limitation this semester was time. Because the Mujoco environments

run on CPU and are the major bottleneck, training is enormously time consuming. In the near

future, we plan to switch to Jax for faster, more scalable training, which will allow us to run

more comprehensive testing with less effort. Nevertheless, our initial results indicate the potential

synergy of uniting these methods into a single framework: an expanding network operating within a

curriculum. By allocating capacity only when needed and avoiding overfitting to early tasks, such a

system may better transfer knowledge across tasks while mitigating catastrophic forgetting. Further

integrating RND for exploration and carefully selecting output-layer sizes could round out this

approach, ultimately bringing us closer to emulating the efficient, structured learning process of

human motor development.
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A. Link to Repository
Code can be found at:
https://github.com/gianlucabencomo/Learning-to-Walk-Like-Humans-Do.
Weights and Biases Logging can be found at:
https://wandb.ai/ne3496-princeton-university/L2W-4-4-25.

B. Additional Width Wise Expansion Results

Table 18: Comparison of (8,8,64) → (16,16,64) → (32,32,64) → (64,64,64) → (128,128,64)
expanding network to a static (128,128,64) sized baseline. All numbers are means over the five
training seeds, upon each of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ (m) Energy∗∗ (J) Final Evaluation Reward
Baseline – 9.7 10M 0.226 15.182 1834.370

Expanding 0.1 2.85 [1M, 2M, 4M] 0.794 0.042 259.356

Expanding 0.3 2.40 [1M, 2M, 4M] 0.697 0.008 222.134

Expanding 0.5 2.88 [1M, 2M, 4M] 0.689 0.003 188.181

Expanding 0.7 2.61 [1M, 2M, 4M] 0.657 0.001 150.437

Expanding 0.9 2.64 [1M, 2M, 4M] 0.755 0.001 239.698

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.
** Calculated as the average energy expenditure per evaluation timestep.
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Table 19: Comparison of (8,8,128) → (16,16,128) → (32,32,128) → (64,64,128) →
(128,128,128) expanding network to a static (128,128,128) sized baseline. All numbers are means
over the five training seeds, upon each of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ (m) Energy∗∗ (J) Final Evaluation Reward
Baseline 5.0 4.82 10M 0.376 12.777 1089.028

Expanding 0.1 3.27 [1M, 2M, 4M] 0.623 0.032 180.596

Expanding 0.3 2.93 [1M, 2M, 4M] 0.614 0.005 113.558

Expanding 0.5 2.62 [1M, 2M, 4M] 0.691 0.100 213.882

Expanding 0.7 2.60 [1M, 2M, 4M] 0.658 0.180 57.885

Expanding 0.9 2.78 [1M, 2M, 4M] 0.684 0.029 180.583

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.
** Calculated as the average energy expenditure per evaluation timestep.

Table 20: Comparison of (8,8,8,64) → (16,16,16,64) → (32,32,32,64) → (64,64,64,64) →
(128,128,128,64) expanding network to a static (128,128,128,64) sized baseline. All numbers are
means over the five training seeds, upon each of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ (m) Energy∗∗ (J) Final Evaluation Reward
Baseline – 11.35 10M 0.428 6.262 1495.965

Expanding 0.1 3.08 [1M, 2M, 4M] 0.727 0.352 193.408

Expanding 0.3 3.55 [1M, 2M, 4M] 0.740 0.014 143.805

Expanding 0.5 3.21 [1M, 2M, 4M] 0.769 0.024 175.779

Expanding 0.7 3.57 [1M, 2M, 4M] 0.733 0.110 274.547

Expanding 0.9 3.37 [1M, 2M, 4M] 0.641 0.141 171.168

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.
** Calculated as the average energy expenditure per evaluation timestep.

Table 21: Comparison of (8,8,8,128)→ (16,16,16,128)→ (32,32,32,128)→ (64,64,64,128)→
(128,128,128,128) expanding network to a static (128,128,128,128) sized baseline. All numbers
are means over the five training seeds, upon each of which 5 evaluation episodes were run.

Config LR-decay Training Wall Time (hr) Training Timesteps COM∗ (m) Energy∗∗ (J) Final Evaluation Reward
Baseline – 4.96 10M 0.362 7.458 716.952

Expanding 0.1 2.56 [1M, 2M, 4M] 0.769 0.009 196.637

Expanding 0.3 2.56 [1M, 2M, 4M] 0.721 0.001 155.220

Expanding 0.5 2.63 [1M, 2M, 4M] 0.786 0.016 141.568

Expanding 0.7 2.61 [1M, 2M, 4M] 0.792 0.001 129.266

Expanding 0.9 2.55 [1M, 2M, 4M] 0.726 0.001 285.274

* Calculated as the average xy distance between the COM and the center of the humanoid’s feet per evaluation timestep.
** Calculated as the average energy expenditure per evaluation timestep.
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