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Abstract

Colombia plays a central role in the global cocaine trade, making the identification of drug
trafficking hotspots vital for disrupting supply chains and shaping effective policy. Despite its
real-world significance, machine learning approaches have not been widely applied to this problem.
This paper addresses that gap by leveraging regression models to predict trafficking hotspots
across Colombia’s 32 departments and capital district, using time-series data from the United
Nations Individual Drug Seizures Database. The best-performing model, XGBoost, achieves a
mean squared error of 3.288 on the log scale. Feature importance analysis highlights key factors
such as crime rates, government anti-narcotics operations and urban-rural population distributions.
Engineered time-dependent features - such as exponential moving averages and rolling statistics -
are particularly important for capturing trends, though sudden shifts in activity remain challenging
to predict. Ultimately, this paper underscores the value of combining rich socioeconomic data with
advanced feature engineering to model drug trafficking, offering key insights into its dynamics and

laying a strong foundation for future research.

1. Introduction

1.1. Motivation

Drug trafficking is a pervasive global issue, posing significant threats to public health, security
and governance. In 2022, the global supply of cocaine reached an all-time high of over 2,700
tons, reflecting a 20% increase from the previous year.[20] Colombia plays a central role in

this crisis, accounting for 65% of global coca bush cultivation in 2022, covering an estimated



230,000 hectares.[ 19] Despite intensified coca eradication efforts, cocaine seizures continue to rise,
underscoring the resilience of trafficking organizations.[19] Addressing trafficking in Colombia is
therefore critical not only for national security but also for global efforts to curtail the cocaine trade.

Beyond identifying trafficking hotspots, this study also explores the socioeconomic conditions
associated with drug trafficking, offering insights into the structural vulnerabilities that trafficking
organizations exploit. High levels of poverty and unemployment, for instance, are believed to
facilitate the recruitment of ordinary citizens into criminal activities.[8] Trafficking has also been
linked to high levels of violence, providing “‘elements that facilitate the lethality of violence” including
access to weapons, training of personnel to use lethal violence and reliance on intimidation tactics to
control populations.[8] Finally, with access to vast financial resources, trafficking organizations can
facilitate the corruption of governments, undermining institutional efficiency and justice systems.[15]
Examining these socioeconomic dynamics is a critical question within political science and provides

an important framework for developing predictive models.
1.2. Goal

This paper employs regression models to address two primary goals: (1) to identify trafficking
hotspots and (2) to explore the socioeconomic conditions most correlated with drug trafficking.
Existing research in related domains serves as a foundation for this study. Cipriano et al. examined
the determinants of illegal coca production in Peru, focusing primarily on the influence of government
policies, such as eradication efforts.[2] Zuckerman Daly analyzed the conditions driving organized
violence in Colombia, adopting a subnational approach but focusing on predicting violence rather
than drug trafficking.[24] Bazzi et. al used machine learning to predict violence in Colombia and
Indonesia, highlighting the distinct challenges of modeling highly fluctuating time-series data.[1]
Building upon these studies, this paper is novel in four distinct ways. First, it shifts focus to
predicting drug trafficking levels by employing regression models and leveraging the United Nation’s
Individual Drug Seizures Database for the years 2012-2022. Secondly, following Zuckerman Daly’s

work, it adopts a subnational lens, analyzing Colombia’s 33 administrative departments (including



its district capital) rather than viewing the country as a single unit. Third, it dramatically expands
the scope of socioeconomic features considered by aggregating data from five distinct databases,
thus developing a novel and comprehensive dataset. Finally, to address the complex time-series
prediction task at hand, it leverages robust feature engineering to account for temporal dependencies
and improve the performance of Linear Regression, Random Forest and XGBoost.

This paper evaluates model performance using Mean Squared Error (MSE), Root Mean Squared
Error (RMSE) and R-squared (R?). The baseline linear regression model established an MSE of
6.01 on the log scale and an R? of 0.42, while the best-performing developed model, XGBoost,
achieved an MSE of 3.288 on the log scale and an R? of 0.68. Important socioeconomic features
include homicide rates, historical government enforcement activity and urban and rural populations.
Key engineered features include exponential moving averages (EMAs) alongside rolling minimum,
maximum and average values. These findings underscore the potential of combining rigorous feature
engineering with comprehensive socioeconomic data to capture complex patterns in drug trafficking
patterns. The remainder of this paper is structured as follows: Section 2 reviews related work and
identifies gaps in existing methodologies; Section 3 outlines the study’s rationale and novel methods;
Section 4 details the implementation process; Section 5 evaluates model performance; and Section 6

discusses conclusions, limitations and pathways for future research.

2. Background and Related Work

While predicting future drug trafficking levels based on the UN Individual Drug Seizures Database
is a novel task, this paper draws on an abundance of previous work to inform its approach. Existing
literature contributes in two key areas: (1) identifying factors associated with trafficking and (2)

outlining methodologies for predictive modeling.
2.1. Identifying Factors Associated with Drug Trafficking

Existing research offers valuable insights into the socioeconomic, geographic and governance-
related conditions that shape trafficking patterns. For instance, Jiménez-Garcia et al. explore

the relationship between drug trafficking, violence and socioeconomic vulnerabilities in Pereira,



Colombia.[8] The study aggregates government statistics from 2010 to 2019, drawing on data
from the Colombian National Police, the National Planning Department and the Mayor’s Office of
Pereira. Using regression-based supervised learning models, it identifies strong correlations between
violence, poverty and trafficking.[8] However, their analysis is limited to a single city, restricting
its generalizability to broader regional or national contexts. Furthermore, they focus primarily on
correlation rather than prediction. I address these limitations by adopting a predictive modeling
framework that generalizes across all administrative departments and incorporates temporal features
to capture dynamic changes in trafficking patterns. Despite these limitations, Jiménez-Garcia et.
al’s findings underscore the relevance of crime, poverty and governance indicators, which I therefore
include as features in this paper.

Several other studies also provide valuable insights into the factors associated with drug
trafficking, though they do not directly address the task of prediction, and therefore inform this
paper’s data collection. For example, Singer explores the societal impacts of drug trafficking,
including its role in fostering violence, corruption and declining trust in government institutions.[15]
While Singer does not propose methodologies for prediction, the emphasis on corruption as a
key enabler of trafficking highlights the importance of incorporating corruption and governance
indicators as features in this paper’s predictive framework. Similarly, Thoumi examines the structural
conditions that facilitate drug economies in Colombia, emphasizing the role of weak governance,
economic crises and unemployment as enabling conditions for illicit drug industries.[17] Thoumi
also highlights the role of trafficking routes and geography, through which coastal and border regions
emerge as high-risk areas.[17] Indeed, the United Nations 2024 World Drug Report also notes a
shift toward maritime trafficking in recent years, with more than 80% of cocaine shipments directed
toward the coast.[20] On land, it illustrates that trafficking routes span northward towards Venezuela
and the Caribbean, eastward toward Brazil and southwest toward Ecuador.[20] These trends confirm
that departments along Colombia’s coast or borders experience heightened trafficking activity, thus
justifying the inclusion of both a border and coastline department feature in this paper’s framework.

While the UN report provides a global overview of trafficking trends, it lacks specific regional



analyses within Colombia. I address this gap by instead focusing on department-level patterns to
provide a more nuanced understanding of trafficking dynamics.

Finally, Saab and Taylor document the extensive historical involvement of both the Revolutionary
Armed Forces of Colombia (FARC) and paramilitary groups in drug trafficking.[14] Although the
2016 peace accords have since reduced their influence, the historical presence of these groups
may have established social infrastructures that continue to shape trafficking patterns today. I thus
incorporate features that account for historical FARC and paramilitary activity to ensure these
enduring influences are captured in the predictive model.

Together, these studies provide critical insights into the factors driving drug trafficking,
informing this paper’s data collection and scope. By integrating socioeconomic, geographic and
governance-related variables, I thus shift focus to building a predictive model to empirically test

these relationships.
2.2. Outlining Methodologies for Predictive Modeling

Given the lack of existing literature on modeling drug trafficking specifically, I draw heavily on
studies that model related political phenomena, such as violence and illegal crop cultivation.
Cipriano et. al offers perhaps the closest parallel by analyzing the determinants of illegal
coca production in Peru.[2] This study uses the Peruvian government’s National Commission
for Development and Life without Drugs (DEVIDA) Database, which includes extensive data on
government eradication efforts and coca cultivation levels. It applies Lasso regression, Ordinary
Least Squares and Vector Autoregression to assess the impact of government enforcement policies.
Its findings reveal a weak negative relationship between eradication efforts and coca cultivation and
a positive correlation between coca base paste confiscations and coca cultivation, suggesting that
enforcement policies alone may be insufficient to deter illicit activity.[2] While Cipriano et. al’s
work focuses narrowly on government enforcement policies, I expand the scope of structural factors
examined by also incorporating economic, governance and crime-related indicators into its predictive

framework. Furthermore, whereas Cipriano et. al models coca cultivation, a more stationary



phenomenon, 1 predict trafficking volumes, which are inherently more dynamic and susceptible to
fluctuations over time and space. Addressing these complexities thus requires advanced feature
engineering to incorporate temporal dependencies alongside socioeconomic trends.

Zuckerman Daly investigates the conditions favoring organized violence at the subnational
level on Colombia.[24] Using a dataset of 274,428 municipality-month observations, she applies
regression techniques and incorporates spatial lag features to capture how prior violence influences
future outbreaks. The study finds that areas with strong pre-existing organizational structures
and histories of past mobilization are more prone to persistent violence.[24] A key takeaway of
Zuckerman Daly’s work is its subnational lens, which emphasizes the importance of analyzing
variations at the municipality level rather than treating Colombia as a homogeneous entity. This
approach acknowledges that political, economic and social factors vary substantially across regions,
and that patterns of violence often emerge in pockets rather than uniformly across the state.[24] Since
drug trafficking operates under similarly localized conditions, I adopt Zuckerman Daly’s subnational
approach. However, while Zuckerman Daly employs binary classification for violence, I predict
trafficking levels on a continuous scale, necessitating richer feature engineering of time-dependent
variables and an expanded scope of socioeconomic features.

Finally, Bazzi et al. examine the use of machine learning to predict violence in Colombia and
Indonesia.[1] For Colombia, the study draws on violence data from 1988 to 2005 provided by the
Conflict Analysis Resource Center and combines it with socioeconomic data, including population
density, government revenues, military presence and geographic features. Testing a range of machine
learning algorithms - including Lasso regression, random forests and neural networks - the authors
predict violence hotspots one year ahead based on historical patterns and socioeconomic variables.
The study finds that machine learning models are effective at identifying persistent hotspots of
violence but face challenges in forecasting sudden outbreaks or escalations.[1] The inclusion of
lagged dependent variables, socioeconomic features and geographic characteristics, particularly
terrain ruggedness, improves predictive accuracy, highlighting the importance of accounting for both

historical patterns and regional characteristics. However, the study also underscores the difficulty of



predicting abrupt deviations, reflecting the limitations of current modeling techniques.[1] I adapt
Bazzy et al.’s methodology, shifting focus to predicting drug trafficking patterns rather than violence.
I use extensive subnational socioeconomic data, tailoring Bazzy et. al’s approach to the specific
dynamics of trafficking by incorporating additional features related to violence, crime, corruption
and governance. Directly responding to the identified challenge of forecasting sudden changes in
time-series data, I employ extensive feature engineering to expand the range of time-dependent
variables incorporated and enhance predictive accuracy.

Together, these studies provide a strong methodological foundation for this paper’s approach.
They underscore the value of adopting a subnational lens to capture localized patterns and highlight
the potential of machine learning techniques to model complex social dynamics, including violence
and illicit crop cultivation. By building on their frameworks, this paper advances predictive modeling
techniques for drug trafficking, addressing critical gaps in prior research and tailoring methodologies
to the unique dynamics of trafficking in Colombia. In doing so, I also hope to advance predictive
modeling techniques for complex time-series data more broadly, in particular by testing the power

of engineered time-dependent features.

3. Approach/Methods

3.1. Focus and Lens

This paper builds on methodologies from related fields, such as violence and coca cultivation
modeling, and shifts focus to predicting drug trafficking levels - an area that remains largely
unexplored. To achieve this, I adopt a subnational lens, analyzing Colombia’s 33 administrative
departments. This approach recognizes that drug trafficking operates as a network of localized
activities, shaped by regional conditions, governance structures and geographic factors, rather than
uniformly across the country.

Much of the existing research, including prominent studies by organizations such as the United
Nations, treats Colombia as a single entity when analyzing drug trafficking trends. While this

national-level perspective is valuable for understanding overarching patterns, it risks obscuring



critical regional variations. Colombia’s diverse geography - from remote rural areas to densely
populated urban centers - and disparities in socioeconomic development and governance create
distinct regional vulnerabilities to trafficking. By examining subnational data, this study allows
for the identification of regional patterns that may be masked by national-level aggregation, thus

offering a more granular understanding of trafficking dynamics.
3.2. Aggregated Socioeconomic Dataset

A major novelty of this paper lies in its expanded socioeconomic feature set, which integrates
data from five distinct datasets to compile a comprehensive range of structural factors relevant
to drug trafficking dynamics. These features encompass violence indicators such as events of
homicide, displacement, threats, extortion and sexual crimes; economic conditions such as income
inequality and poverty levels; and governance metrics such as corruption and revenue. Education
and public health variables - including life expectancy, average years of education and infant
mortality rates - are also included to capture broader measures of public health and development.
Additionally, population statistics - such as urban and rural population densities - are incorporated
to account for differences in infrastructure and accessibility that may influence trafficking routes
and hubs. Geographical features further enrich the dataset, identifying departments located along
coastlines or international borders to capture risk factors associated with maritime and cross-border
trafficking routes. Recognizing historical context, this paper also includes variables indicating the
presence of paramilitary groups and the FARC, reflecting areas that have experienced prior armed
conflict and may retain structural vulnerabilities to organized crime. Similarly, data on historical
government-sponsored anti-narcotics operations is also included. In total, the dataset incorporates
over 50 socioeconomic variables, drawing on existing literature to encompass a wide range of
factors believed to influence trafficking patterns. By combining diverse data sources and capturing
both socioeconomic and geospatial dynamics, this dataset aims to improve predictive accuracy
while offering deeper insights into the conditions that sustain trafficking networks. Moreover, this

approach addresses gaps in prior studies that relied on narrower feature sets, enabling a more holistic



modeling framework that integrates economic, social, political and spatial dimensions of trafficking

activity.
3.3. Rigorous Feature Engineering

Drug trafficking is an inherently complex and dynamic phenomenon, characterized by sharp
fluctuations and sudden changes that make forecasting particularly challenging. Prior studies in
related domains, such as Bazzi et al.[1], have highlighted the difficulty of modeling abrupt shifts
in time-series data and often rely solely on simple lagged dependent variables. While effective
for capturing basic temporal patterns, such approaches may fail to account for the full range of
variability and volatility present in complex time-series data. Thus, this paper significantly expands
the use of time-dependent features. In addition to lagged features, it incorporates rolling averages
and exponential moving averages to smooth short-term fluctuations; rolling maximum, minimum,
range and standard deviation values to quantify variability and volatility over time; cumulative sums
to capture long-term trends; growth rates and momentum indicators to reflect sudden changes; and
seasonal indicators to capture cyclical trends in trafficking levels. In total, over 30 time-dependent
features are engineered from the dependent variable, allowing the models to track both gradual

trends and abrupt shifts in an effort to address the forecasting challenges identified by Bazzi et al.[1]
3.4. Model Training and Evaluation Overview

To predict trafficking levels, this paper develops three regression models: Linear Regression, Random
Forest and XGBoost. A simple linear regression model serves as the baseline model and excludes
the engineered time-dependent features, providing a useful benchmark for assessing the added value
of incorporating more advanced features and techniques. I then leverage feature engineering, feature
selection, regularization and hyperparameter tuning to develop three more complex models with
increased predictive power: Ridge Regression, Random Forest and XGBoost. This choice of models
provides several benefits. First, the Ridge Regression model offers a direct comparison against the
baseline, testing the impact of adding engineered features and regularization. Random Forest was

selected for its ability to handle non-linear relationships and high-dimensional data, thus potentially



allowing more features to be included without risking overfitting. XGBoost is also highly effective
for complex, non-linear patterns, thus making it another suitable choice for the task at hand. Finally,
all three models offer insights into feature importance, allowing for more interpretable results.

To evaluate model performance, I utilize three key metrics, which are described in more detail
in Section 4.7: MSE, RMSE and R?. Beyond these metrics, residual plots are also analyzed to detect
systematic errors. I conduct feature importance analysis to determine both the socioeconomic factors
most correlated with drug trafficking and the engineered features most useful in forecasting complex
time-series data. I also employ department-level error analysis, examining regional variations to

determine where the model is most and least successful.

4. Implementation
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Figure 1: Flowchart illustrating the key implementation steps

Figure 1 provides an overview of the implementation steps spanning data preparation, model

training and evaluation, which are detailed in the following subsections.
4.1. Data Collection:

4.1.1. Dependent Variable: The dependent variable in this study - quantity of cocaine seized -
is gathered from the UN Individual Drug Seizures Database for the years 2012-2022.[18] This
database provides detailed, standardized information on drug seizures, including quantity, substance
type, date and geographic location. By capturing actual interdiction events, it offers a direct proxy

for trafficking activity at specific times and places. While seizure data inherently reflects law
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enforcement activity and may be biased toward areas with stronger enforcement, it remains one of
the most comprehensive and consistent datasets for estimating trafficking trends over time.

4.1.2. Socioeconomic Features: In Section 2.1, I outlined the existing literature that informed
the socioeconomic factors included in this study. Finding socioeconomic data at the department
level - as opposed to national-level data - posed a significant challenge and required aggregating
data from five distinct databases to construct a comprehensive dataset. The University of Los
Andes Data Center’s Panel Municipal Database (CEDE) provides detailed municipal-level data
on government revenues, population statistics and various crime rates, making it particularly
valuable for analyzing subnational variations in governance and security conditions.[21] It also
includes data on historical FARC and paramilitary presence, coca eradication efforts and major
government-sponsored antinarcotics operations, enabling the incorporation of conflict histories and
enforcement measures as predictive variables. To account for corruption, I used data from Monitor
Ciudadano de la Corrupcion, a platform managed by Transparency International, which tracks
institutional weaknesses and instances of corruption across Colombia.[9] Broader socioeconomic
and development indicators were extracted from the Global Data Lab’s Subnational Area Database,
which provides internationally standardized measures of life expectancy, education, economic
inequality, poverty and public health.[4] Homicide data was sourced from the Colombian National
Police Department’s annual reports, which listed individual homicides by location and date.[13]
Finally, demographic and economic data including poverty rates and population density were
obtained from Colombia’s National Administrative Department of Statistics (DANE).[3] This
database also provided breakdowns of municipalities contained within administrative departments,
which was extremely useful during data processing. In total, this paper compiles over 50 variables
from these sources. The resulting socioeconomic dataset spans 2012-2022, aligning with the UN

seizure data and encompassing all 33 administrative departments in Colombia.
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4.2. Data Exploration:

Data exploration of the training data consisted of gathering summary statistics, graphing distributions
and generating correlation matrices using the Pandas, Seaborn and Plotly libraries, with the assistance
of ChatGPT.[23, 22, 12, 10]

4.2.1. Dependent variable: The dependent variable in this analysis, Monthly Quantity Seized
(kg), exhibits high variability and substantial skewness, as highlighted by the boxplot in Figure
2.[10, 22] The raw values range from O to 21,562 kg, with a mean of 652.89 kg and a standard
deviation of 1,622.90 kg.[23] Notably, 25% of the data lies below 1.29 kg, while the 75th percentile
reaches 538.92 kg, reflecting a right-skewed distribution. This pattern suggests the need for a log
transformation, which is discussed in section 4.3.4. The target variable also demonstrates significant
regional variations, as shown in Figure 3. Departments such as Narifio, Valle del Cauca, Antioquia
and Norte de Santander account for the largest quantities seized, while departments like Vaupés,
Guainia and Arauca report minimal seizures. Temporal analysis of monthly trends also indicates
high variability over time, with some months exhibit wider interquartile ranges and larger outliers,
reflecting peaks in activity. This suggests the need for rigorous feature engineering to help capture
these complex patterns. For more graphs exploring the dependent variable data, see Appendix B.
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Figure 2: Boxplot shows high variability of untrans- Figure 3: Target variable shows substantial re-
formed target variable across the training set gional variation across the training set

4.2.2. Socioeconomic Features: Socioeconomic features also reveal wide variations across regions.

For example, annual displacement events range from O to over 128,000, and annual homicides reach
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a maximum of 3,130, underscoring regions of severe instability.[23] Many features exhibit skewed
distributions with substantial outliers, suggesting the need for data transformations. To further
explore relationships between features, I employed correlation matrix analysis using the Seaborn
library.[22] Example correlation matrices can be found in Appendix D, and they illustrate two main
points. Firstly, given the high correlations among several features, multicollinearity could pose
challenges for modeling, suggesting the need for rigorous feature selection. Secondly, the relatively
low correlations between most features and the dependent variable suggests that models such as
XGBoost and Random Forests may perform better by leveraging decision trees to capture complex
patterns that linear correlations alone cannot fully explain. From the initial exploration however,
events of homicide, displacement, threats and other crimes exhibit the strongest linear correlation

with the target variable.
4.3. Data Processing:

Data processing consisted of six major steps, as detailed below.

4.3.1. Map data to departments: One of the main challenges with the UN Individual Drug Seizure
Database was the inconsistency in geographic reporting, which varied between city, municipality and
department levels depending on the year. Further complications arose from inconsistent spellings
and the use of accent marks, leading to difficulties in standardizing location names. To resolve
these issues, I cross-referenced all reported cities and municipalities with official lists provided by
DANE. Unicode normalization techniques were used to remove accents and standardize spellings,
and any remaining discrepancies were manually corrected.[16] A similar process was carried out for
the CEDE dataset, which reported data at the municipality level. For crime events and population
statistics, I aggregated values across municipalities to produce department-level data.

4.3.2. Convert to month time-step: While the UN Individual Drug Seizure Database provides
seizure dates at the daily level, most socioeconomic data is reported annually. To address this
mismatch, I tested multiple potential time-steps, including daily, weekly, biweekly, monthly and

yearly intervals. However, smaller time steps led to a proliferation of zero values, as drug seizures
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are sporadic and do not occur daily or even weekly in some departments. To balance the need to
minimize zero values with having sufficient temporal granularity, I ultimately selected monthly
time-steps. This approach produced 132 month observations per department over the eleven-year
period, thus totaling 4,356 data points, while keeping the number of zero values manageable. A
detailed breakdown of zero values for each potential time-step is provided in Appendix C, providing
an empirical justification for the ultimate selection of months. The still relatively significant number
of zeroes in the target variable data is discussed in more detail in Section 4.3.4

4.3.3. 60-20-20 data split: The third step involved splitting the data into training, validation and
test sets, using a 60-20-20 split. The training set included the first 82 months, the validation set
included the next 25 months and the testing set included the final 25 months of data. Care was taken
throughout the model training process to keep the test data isolated. All scalers were fit only on the
training data, and data exploration, hyperparameter tuning and feature selection were performed
exclusively on the training set, ensuring that test data remained unbiased for evaluation. I also
experimented with time-series expanding window cross-validation, which incrementally expanded
the training data by adding observations on each fold while validating on the subsequent period.[7]
However, the resulting MSEs decreased with each iteration, suggesting that larger training sets
improved performance (see Appendix F for results). Due to the limited amount of data available, I
ultimately prioritized using the largest possible training set and thus did not employ cross-validation.
Indeed, because of the limited data size, I actually saw an improvement in performance between
using 60% of the data during model training and using 80% of the data during final testing. However,
should more data become available in the future, cross-validation may prove more useful.

4.3.4. Log Transformation of Target Variable: To reduce the high variability of the target variable,
I used np.logp to apply the log transformation log(1 + x).[5] The transformed target variable, Log
Monthly Quantity Seized (kg), has a mean of 3.82, a standard deviation of 2.84 and a range of 0
to 0.998, producing a more normalized distribution that reduced the influence of extreme outliers.
Figure 4 shows a boxplot of the transformed data, demonstrating how the distribution of values

became more balanced in comparison to Figure 2.[10, 22] One shortcoming of this transformation is
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Figure 4: After log transformation, the target variable shows a much more balanced distribution with
fewer outliers

that it preserved zero values by treating log(0) as 0, which accounted for 9.66% of the target variable
data. An alternative transformation, which instead added a small constant by computing log(x +0.1)
was tested in an effort to reduce this data imbalance. However, this approach produced negative
values that lacked clear real-world interpretation and disrupted the distribution by mapping small
quantities to values as low as -4.61. Models trained with this transformation performed substantially
worse, as summarized in Appendix E, and thus this method was not pursued further.

4.3.5. Aggregating Engineered Features and One-Hot Encoding Departments: Department
identifiers were one-hot encoded, with each column representing a specific department and taking a
value of 1 if the row corresponded to that region.[23] One column was dropped in order to avoid full
multicollinearity. I also aggregated engineered features, which are discussed in Section 4.4.

4.3.6. Feature standardization via Standard Scaler: Data exploration revealed significant variation
in feature distributions and scales, with many containing outliers. This raised the question of
whether standardization or normalization was more appropriate. Normalization, which scales
values to a fixed range, risked compressing most values and amplifying the impact of outliers. In
contrast, standardization, which centers data at O with a variance of 1, is more robust to outliers.
Although tree-based models like XGBoost and Random Forest are scale-invariant, standardization
can still help prevent certain features from exerting disproportionate influence. I therefore applied
StandardScaler to all features except the target variable, fitting it only on the training data to
avoid data leakage.[11, 10] However, because some features did not follow a Gaussian distribution

and perhaps might benefit from normalization, I also ran the models with data normalized using
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MinMaxScaler for comparison.[11] The results showed minimal differences in performance metrics

(see Appendix G), so all results presented in the main paper are based on standardized data.
4.4. Feature Engineering:

Bazzy et al. notes the challenges of modeling volatile time-series data.[1] To address this
challenge, I employed robust feature engineering of time-dependent features. Pandas offers grouping,
transformation and shifting functions that enabled these features to be easily computed and aggregated
to the dataset.[23] I also referenced time-series articles and textbooks to generate ideas for potential
engineered features, and [ used ChatGPT to help write the code for them.[10, 7, 6] All time-dependent
features are shifted and the first six months of data are dropped to prevent data leakage.

I began by engineering traditional lagged features, with the dependent variable lagged by 1
through 6 months, to capture short-term influences. In addition, I implemented several more complex
time-series transformations to capture both short-term fluctuations and long-term trends in the
dependent variable. Rolling averages and exponential moving averages - which weight more recent
months more heavily - were computed to smooth sudden variations and highlight sustained trends.
Rolling maximum, minimum, range and standard deviation values were added to quantify variability
and volatility over time, capturing the tendency for seizures to spike unpredictably. Cumulative
sums were included to model cumulative trends and longer-term accumulation of trafficking activity.
Growth rates and momentum features were calculated to reflect short-term directional changes in
seizures. I also engineered seasonal features for winter, spring, summer and fall to capture cyclical
trends. Altogether, over 30 time-dependent features were engineered from the dependent variable,
offering a comprehensive approach to addressing the challenge of complex time-series data.

As discussed in Section 2.1, I also engineered geographic features. Coastline departments
include Narifio, Cauca, Valle del Cauca, Choc6, Antioquia, Cérdoba, Sucre, Bolivar, Atldntico,
Magdalena and La Guajira. Border departments include Narifio, Putumayo, Amazonas, Vaupés,

Guainia, Vichada, Arauca, Norte de Santander, Cesar, La Guajira and Chocé.
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4.5. Feature Selection:

Given the large number of features initially gathered and the highly correlated features revealed
in data exploration, conducting feature selection was crucial to narrowing down the feature set.
The feature selection process consisted of two steps and was run on the training and validation set:
(1) correlation matrix analysis to remove redundant features and reduce multicollinearity and (2)
recursive feature selection tailored to each model.

4.5.1. Correlation Matrix Analysis: I first grouped features by topic, separating them into
socioeconomic, governance, crime and time-dependent categories. I then generated correlation
matrices for each group to identify features with high correlations to one another, examples of
which can be found in Appendix D.[22] When removing highly correlated features, I retained
those that exhibited stronger correlations with the target variable. After this filtering step, I
combined all features across groups and calculated the Variance Inflation Factor (VIF) to further
assess multicollinearity, ensuring no remaining features had a VIF exceeding 10.[10] Notably,
time-dependent features - especially EMAs - exhibited high correlations both with one another
and with the target variable. While these features significantly improved model performance, they
also tended to dominate feature importance, making it challenging to balance their predictive value
without over-relying on them. To address this, I combined correlation analysis with recursive feature
selection to refine the feature set further, as described below.

4.5.2. Recursive Feature Selection: For each model, I employed recursive feature selection to
identify the most important features. For Linear Regression and Random Forest, I used scikit-learn’s
Recursive Feature Elimination function and code generated from ChatGPT.[10, 11] For XGBoost,
recursive feature selection was implemented using a manual while-loop generated by ChatGPT,
as XGBoostRegressor is not compatible with scikit-learn’s RFE function.[10] To ensure balanced
feature importance and avoid domination by time-dependent features, I applied a two-step RFE
process. First, I ran RFE on socioeconomic features alone to isolate structural predictors. Then, I
combined the top socioeconomic features with time-dependent features and re-ran RFE to determine

the top overall features. This iterative process incorporated multicollinearity analysis at each step to
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Top 20 Features by Importance
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Figure 5: Feature selection results on validation data before removing highly correlated time-

dependent features. The inflation of the 6-month EMA highlights the need for rigorous multicollinear-
ity analysis

ensure feature importances were not inflated, particularly for Linear Regression, as Random Forest
and XGBoost can better handle multicollinearity due to their tree-based structures. Details on the
selected features and their importance are presented in Section 5.

The rationale for this iterative process is illustrated in Figure 5, which highlights an early
challenge encountered during feature selection. As shown, including a large number of time-
dependent features led to dominance by the 6-month EMA in Linear Regression, attributed to high
multicollinearity. This observation informed the subsequent refinement of the process, resulting in
the removal of redundant time-dependent features and the inclusion of department-level structural

features in the final set.
4.6. Hyperparameter Tuning and Regularization:

4.6.1. Linear Regression: To improve the performance of Linear Regression, I experimented
with three variations: Ridge, Lasso and Elastic Net Regression. Ridge Regression employs
L2 regularization, shrinking coefficients toward zero without eliminating features, making it
particularly effective for handling highly correlated predictors. Lasso Regression, in contrast, uses
L1 regularization, which sets some coeflicients to exactly zero, effectively performing feature
selection. Elastic Net combines L1 and L2 penalties, balancing the benefits of both methods. Using

code generated from ChatGPT and scikit-learn’s Ridge, Lasso, and Elastic Net functions, I tested
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various regularization strengths (alpha) for Ridge and Lasso.[10, 11] For Elastic Net, I also varied
the L1 ratio to determine the optimal balance between Ridge and Lasso components. Specific
parameter ranges and results are summarized in Section 5.

4.6.2. Random Forest: For Random Forest, I tuned 4 key parameters. The first parameter,
n_estimators, controls the number of trees in the forest, with more trees generally improving
model performance and increasing computational cost. The second parameter, max_depth, controls
the maximum depth of each tree. Deeper trees can capture complex patterns but are prone
to overfitting, particularly when the training data is noisy. To mitigate overfitting, I adjusted
min_samples_split, which sets the minimum number of samples required to split an internal
node, and min_samples_leaf, which specifies the minimum number of samples required to form
a leaf node. Higher values for these parameters reduce the complexity of the trees and help improve
generalization. I first used GridSearch to explore a range of values for these hyperparameters and
then manually fine-tuned them, checking values one step in either direction to ensure that the optimal
hyperparameters had been selected.[11, 10] Results are discussed in Section 5.

4.6.3. XGBoost: For XGBoost, I focused on tuning n_estimators, learning_rate, max_depth
and min_ child_weight. The n_estimators parameter defines the number of boosting rounds
or iterations. Learning_rate controls the step size during boosting, determining how quickly the
model learns. Lower learning rates help the model converge more slowly, potentially leading to better
generalization when paired with an increased number of boosting rounds. Max_depth specifies
the maximum depth of each tree, similar to Random Forest. Finally, min_child_weight sets the
minimum sum of instance weights required to split a node. This parameter acts as a regularization
tool, discouraging the model from creating overly specific splits and encouraging broader feature
utilization. As with Random Forest, I first used GridSearch to explore hyperparameter ranges and
then manually adjusted values to confirm optimal performance.[11, 10] Hyperparameter tuning

results are presented in Section 5.
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4.7. Evaluation:

To comprehensively evaluate model performance, I utilized both quantitative metrics and qualitative
analyses to assess different aspects of prediction capacity and interpretability. Quantitative metrics
include MSE, RMSE and R%. MSE measures the average squared difference between predicted
and actual values, penalizing larger errors more heavily. This property is particularly important
given the variability in the target variable, as it ensures that extreme mispredictions are appropriately
reflected in the evaluation. Because the target variable is log-transformed, reporting MSE on both
the log and original scales enhances interpretability by allowing a clear understanding of prediction
errors relative to the untransformed data. RMSE complements MSE by taking its square root, which
aligns the metric with the original scale of the data, and offers an more interpretable understanding
of model performance in real-world units. R? evaluates the proportion of variance explained by
the model, offering insights into the model’s overall capacity to capture patterns within the data.
By combining R? with MSE and RMSE, I aimed to balance measures of absolute error with an
understanding of the model’s explanatory power.

In addition to these quantitative metrics, I also incorporate qualitative analyses of feature
importance, residual plots and department-level patterns. Feature importance analysis helps
identify key socioeconomic and time-dependent factors correlated with drug trafficking, offering
valuable insights for both model evaluation and policy implications. Importantly, comparing feature
importance rankings across models highlights consistent predictors, reinforcing their significance,
while differing trends suggest an area for further investigation. I also used residual plots to
examine patterns in prediction errors, providing qualitative insights into potential model biases.
To complement this, department-level error analysis was conducted to assess regional variations
in model performance. This analysis highlights whether the model performs consistently across
geographic areas or if certain departments experience systematically higher prediction errors,
which may reflect underlying regional differences. By combining these quantitative and qualitative
evaluation methods, I aimed to develop a comprehensive understanding of the models’ strengths and

limitations.
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5. Evaluation

Model LJ; :L'X'ffgz Orig;li-re:asltscMazE- kg? Or.l!-;i::I |:CI:I/§-Ekg R*  |Hyperparameters
Baseline Linear| ¢ 4 402.83 10.58 0.420 nla
Regression
5 REED 3.364 27.90 5.260 0.675 alpha = 10
egression
n_estimators = 500
Random Forest|  3.334 27.05 5.209 06r8 [ o
min_samples_leaf = 15
n_estimators = 700
XGBoost 3.288 25.76 5.129 0.683 R
min_child_weight =11

Table 1: Comparison of model performance metrics with XGBoost performing best

Table 1 summarizes the final results of the models, which differ slightly from my final presentation
due to the incorporation of additional data and refinement of the feature selection and hyperparameter
tuning process. Because this project’s dataset is novel and has no immediate predecessors to compare
results against, I use a simple Linear Regression model as my baseline, which does not leverage
engineered features or regularization. Of the three developed models, XGBoost performs the best,
with a MSE of 3.288 on the log scale and an R? value of 0.683. However, all three models are
relatively close in their performance and dramatically improve the MSE of the baseline model
by a margin of about 375 kg? on the original scale. Interpreting the RMSE, this means that on
average, predictions measure within about 5 kg of their actual value, an improvement of 5 kg from
the baseline model. Furthermore, the R? value also dramatically improved from 0.42 to just under
0.7, indicating that the models are better able to capture patterns within the data. These results
indicate that the use of engineered features and more complex models dramatically improve the
predictive capacity of the models. In the following subsections, I detail the specific results for each

of the models and conclude with error analysis.
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5.1. Baseline Linear Regression:

5.1.1. Feature Selection Results: Figure 6 shows the feature selection results for the baseline Linear
Regression model on the training and validation sets. Note that engineered features were excluded
from this model, so only socioeconomic features are included. Important features thus include
urban and rural population statistics, historical government enforcement activity (captured in the
feature Historical Dismantling Labs (1993-2008), life expectancy and gender development
(captured in the indicator GDT). No regularization was utilized for the baseline.

Top 20 Features by Importance

Urban population

Rural population

Historical Dismantling Labs (1993-2008)

Life Expectancy

GDI

Events of Confinement

Percent of Total Corruption Cases for That Year
Events of Threats

Events of Mine Explosions

Transfers from national entities (millions of pesos)
Events of Kiddnapping

Total acts against police

Hectares of coca

Distance to Bogota

Mean International Wealth Index

Total acts of extorsion

Hectores of coca erdaicted manually

Area km2

Number of Homicides that Year

Events of Displacement

Features

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Feature Importance (Absolute Coefficient)

Figure 6: Feature selection results for Baseline Linear Regression on training and validation sets,
excluding engineered features.

5.1.2. Testing Results and Residual Plots: As shown in Table 1, the baseline Linear Regression
model performed quite poorly, achieving a test MSE of 6.001 on the log scale. Indeed, when
compared to the other models, the poor performance of this model highlights the importance of the
time-dependent engineered features, which dramatically improved performance once incorporated
into the subsequent models. Examining the residual and actual versus predictd value plots in Figure
7, the clear diagonal line illustrates that zero values were consistently overpredicted, which is

discussed in more detail below.
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Figure 7: Residual Plot and Actual versus Predicted Value Plot for Baseline Linear Regression.[10]

5.2. Ridge Regression (Enhanced Linear Regression Model):

5.2.1. Feature Selection and Hyperparameter Tuning Results: Figure 8 shows the feature
selection results for Linear Regression on the training and validation sets.[10] Notably, the resulting
feature importance graph is far more balanced than Figure 5, as correlated features were successfully
removed. The 6-month EMA emerged as the dominant feature, along with many one-hot-encoded
department features. Table 2 summarizes the results of different regularization experiments, with
Ridge Regression with alpha = 10.0 performing best, achieving a log validation MSE of 3.781.
The strong performance of Ridge suggests that the inclusion of multiple correlated features, rather
than strict sparsity, enhances prediction accuracy.

Top 20 Features by Importance

EMA_6M_Log_Monthly_Quantity
Department_Arauca
Department_Boyaca

Department_Sucre
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Department_Chocé

Department_Caqueta
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Feature Importance (Absolute Coefficient)

Figure 8: Feature selection results for enhanced Linear Regression on training and validation sets
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Alpha Value Ridge MSE Lasso MSE [ Elastic Net MSE L1' Ratio
Log scale - kg? | Log scale - kg? | Log scale - kg? | Elastic net only

0 3.823 3.823 3.823 0

0.1 3.809 3.779 3.757 0.5

0.5 3.8 4.049 3.843 0.1
1 3.796 4.787 3.956 0.1
2 3.792 7.693 4.255 0.1
5 3.787 8.273 5.337 0.1
10 3.781 8.273 6.821 0.1

Table 2: Comparison of different regularization techniques for Linear Regression evaluated on
training and validation sets, with Ridge Regression with alpha = 10 performing best
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Predicted Values (Log Scale) Figure 10: Actual versus predicted plot for

Figure 9: Residual plot for Ridge Regression.[10] Ridge.[10]

5.2.2. Testing Results and Residual Plots: As detailed in Table 1, the Ridge Regression model
achieved a test MSE of 3.364 on the log scale, thus substantially outperforming the baseline linear
regression model but slightly underperforming in comparison to Random Forest and XGBoost. This
indicates that the incorporation of regularization and engineered features significantly boosted model
performance, as the test MSE dropped by about 375 kg? between the baseline and ridge regression
models, and the R? value increased from 0.42 to 0.675. Taking a closer look at the residual plot for
the Ridge Regression model, Figure 9 shows a general pattern where residuals are distributed above
and below zero, but it also highlights a distinct group of points that form a downward diagonal below
the zero line. Combined with the actual versus predicted values plot shown in Figure 10, we see that
these correspond to zero values, which the model tends to overpredict, as in the baseline model. As
the actual values get larger, there also seems to be a slight trend of underprediction, as seen by the
slightly denser cluster of points below the line. While most points are clustered relatively close to the

0 residual line (certainly, most points are well within an MSE of 3 on the log scale), there are some
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outliers with much higher residuals. These outliers - perhaps corresponding to certain departments -
are particularly poorly predicted, thus compromising the overall performance of the model.

5.2.3. Feature Importance: Feature importance analysis in Figure 11 reveals the dominance of the
6-month EMA feature, indicating its critical role in shaping predictions. Among socioeconomic and
geographic variables, department presence along a coastline, historical government enforcement
activity (Historical Dismantling Labs) and urban population stand out as strong predictors.
Department-level features are also highly influential, especially for Arauca, Boyacd, Caquetd and
Sucre, perhaps reflecting the model’s reliance on identifying distinct patterns for certain regions.

Top 20 Features by Importance - Ridge Regression
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Figure 11: Ridge Regression feature importance graph shows a heavy dependence on 6-month EMA
and department-identifying features.

5.3. Random Forest:

5.3.1. Feature Selection and Hyperparameter Tuning Results: The feature selection results in
Figure 12 show that Random Forest retained more time-dependent features than Ridge Regression
for two reasons: (1) its tree-based structure better handles multicollinearity, and (2) removing any of
the top time-dependent features significantly worsened MSE, indicating their collective importance
in capturing key patterns. While Random Forest can manage larger feature sets, additional variables
held low importance and thus were excluded. Notably, one-hot encoded department variables were
unnecessary, as the model effectively captured time-based trends without spatial identifiers. The

hyperparameter tuning results are summarized in Table 3. After testing hundreds of parameter
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combinations, the final model used n_estimators = 500, max_depth =9, min_samples_split
=5,and min_samples_leaf = 15, achieving a log MSE of 3.7 on the validation set.

Top 20 Feature Importance in Random Forest Model
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Figure 12: Final feature selection results for the Random Forest model

N_estimators| Max_depth | Min_samples_split|Min_samples_leaf Vlzgdsact;?:-hln(sf
100 5 11 1 3.7
100 1 10 5 4.86
100 10 5 15 3.75
300 11 11 5 3.8
300 1 10 1" 4.86
400 9 5 15 3.71
500 9 5 15 3.7
600 9 5 15 3.7

Table 3: Summary of hyperparameter testing for Random Forest

5.3.2. Testing Results and Residual Plots: As detailed in Table 1, the Random Forest model
achieved a test MSE of 3.334 on the log scale, thus outperforming the baseline Linear Regression
and Ridge Regression models, but slightly underperforming in comparison to XGBoost. The
Random Forest residual plot in Figure 13 is quite similar to the Ridge Regression plot, showing a
visible diagonal cluster of residuals below zero, corresponding to cases where the model tends to
overpredict small or zero values. There is also a similar tendency to underpredict higher values, as
shown in the actual versus predicted plot on the right in Figure 14. In some sense, it seems that

when dealing with widely fluctuating data, predicting a value too extreme on either end is “risky.”
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Figure 13: Residual plot for the Random Forest = Figure 14: Random Forest Actual versus Predicted
Model.[10] plot.[10]

Top 20 Feature Importance in Random Forest Model
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Figure 15: Random Forest feature importance graph shows a heavy dependence on EMAs and rolling
averages, as well as socioeconomic features like events of sexual crimes and homicides.

5.3.3. Feature Importance: The feature importance plot in Figure 15 highlights the dominant
role of time-based predictors, such as EMAs and rolling averages, emphasizing the significance of
recent trends in shaping predictions. The 2, 5 and 6 month lags are significant but less important,
demonstrating the utility of the more complex engineered time-dependent features. With regards to
socioeconomic features, events of sexual crimes, displacement and homicides rank most highly,
and urban and rural population statistics are also relevant. Interestingly, department features are
not important for this model, demonstrating its ability to draw generalized patterns from the data

without explicitly identifying departments.
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5.4. XGBoost:

5.4.1. Feature Selection and Hyperparameter Tuning Results: Feature selection results, shown
in Figure 16, highlight the dominance of the six-month EMA, which remained the most important
feature even when included as the sole time-dependent variable. Replacing it with four or five other
time-dependent features increased the log MSE by 0.1, while the remaining features contributed
marginal importance. Consequently, the final selected features relied heavily on six-month
exponential and rolling averages, with minimal reliance on socioeconomic or department-level
features. Hyperparameter testing results are summarized in Table 4, focusing on key distinctions to
justify the final configuration. The final model usedused n_estimatorssetto 700, learning_rate

set t0 0.01, max_depth setto 2 and min_child_weight setto 11, achieving a log MSE of 3.831

on the validation set.

EMA_6M_Log_Monthly_Quantity
Rolling_6M_Log_Monthly_Quantity
Number of Homicides that Year
Ocean_department
Events of Displacement
EMA_3M_Log_Monthly_Quantity
Historical Dismantling Labs (1993-2008)
Rolling_3M_Min_Log_Monthly_Quantity
Rural population
Events of Threats
Historical ELN Presence (1993-2008)
month_number
Lagged_Log_Monthly_Quantity_Seized_4
Urban population
Department_Arauca
Department_Tolima
Department_Magdalena

Feature

Top 20 Feature Importances in XGBoost Model
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Figure 16: Final feature selection results for XGBoost

N_estimators [Learning_rate| Max_depth |Min_child_weight V;I;d:::/):-l\ln(;E
300 0.001 2 1 6.42
300 0.01 3 1 3.91
500 0.1 5 5 5.34
500 0.01 1 10 3.9
600 0.01 2 10 3.84
700 0.01 2 1 3.831
700 0.01 5 5 4.21
800 0.01 3 11 3.93

Table 4: Summary of hyperparameter testing for XGBoost
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Figure 17: Residual plot for XGBoost.[10] Figure 18: XGBoost Actual vs. Predicted plot.[10]

5.4.2. Testing Results and Residual Plots: As detailed in Table 1, the XGBoost model achieved a
test MSE of 3.288 on the log scale, thus outperforming all other models. The residual plot for the
XGBoost model in Figure 17 is again quite similar to the residual plots for both the Random Forest
and Ridge Regression models. In all three cases, the residuals are mostly well-distributed around
zero, but there is a clear diagonal cluster of negative residuals corresponds to cases where the model
tends to overpredict small or zero values. It also struggles with underpredicting higher values, and
while most residuals are close to zero, there are certainly outliers with significantly higher residuals,
as further illustrated in Figure 18.

Top 20 Feature Importances in XGBoost Model
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Figure 19: XGBoost final feature importance graph shows a heavy reliance on the 6-month EMA and
to a lesser extent the 6-month rolling average.
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5.4.3. Feature Importance: The feature importance plot in Figure 19 highlights the dominant
role of engineered features, particularly the 6-month EMA and rolling averages. Indeed, as
previously discussed, most features are largely outweighed by the importance of the 6-month EMA.
Despite hyperparameter tuning efforts during training using max_depth and min_child_weight
to encourage the model to utilize more features, the best results ultimately still came from using
the features outlined above, despite this imbalance. Regarding socioeconomic factors, events of
homicide, government anti-narcotics operations (captured in Historical Dismantling Labs)
and rural population statistics are most important, though significantly less so than the time-dependent
features. The Ocean_department feature is ranked Sth, indicating that a department’s presence on
the coastline is relatively important. However, one-hot-encoded department features do not play a

large role in XGBoost, in contrast to Ridge Regression.
5.5. Error Analysis:

Error analysis reveals consistent patterns across all models, including a recurring challenge with
zero values. Residual plots highlighted diagonal lines of errors for zero values, where predictions
were consistently overpredicted. This reflects a broader issue with skewed data distributions and
suggests a need for alternative transformations or non-linear methods to better capture data extremes.
While the selected transformation of log(x + 1) proved better than the alternative transformation of
log(x + 0.01), further experimentation with transformations could enhance performance.

Despite extensive feature engineering, all models struggled to capture sharp spikes and drops in
seizure quantities. For example, the time-series plot in Figure 20 demonstrates XGBoost’s ability to
capture broad trends quite well, but it also indicates that the model still fails to quite reach extreme
values, especially on the lower end. However, when compared to the baseline Linear Regression
model’s time series plot in Figure 21, the improvement with XGBoost is evident. Indeed, the
baseline model’s inferior performance highlights the importance of incorporating time-dependent
engineered features and leveraging more complex models, as XGBoost is far better able to capture

volatile patterns. Ridge Regression and Random Forest, while also performing significantly better
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than the baseline, slightly underperform compared to XGBoost. Similar time-series plots for these
models can be found in Appendix H. Although the MSE differences are relatively small on the log
scale and thus less visually distinct in graphs, Figure 22 illustrates XGBoost’s superior performance
across most departments, with the exception of highly volatile regions like Cérdoba and Sucre, in
which it performs slightly worse. On average, however, it outperforms both Ridge Regression and
Random Forest.

Actual vs Predicted Log Monthly Quantity Seized (kg) for XGBoost
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Figure 20: Time-series plot for the XGBoost Model, where each index corresponds to a time-step
prediction for a particular month and department.[10]
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Figure 21: Time-series plot for the baseline Linear Regression model, where each index corresponds
to a prediction for a month and department.[10]
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Figure 22: Department MSE breakdowns across all three models show consistent trends of "hard"
and "easy" departments. Note that MSEs are on the log scale here.[22]

Indeed, the model’s limitations in capturing sudden or extreme fluctuations in trafficking activity
were particularly evident in certain "hard" departments. Figure 22 shows a breakdown of department
MSEs across all three models, demonstrating the consistency of these trends across models. In
particular, Cérdoba, Sucre and Atlantico proved particularly challenging. On the other hand, Vaupés,
Narifio and Magdalena were among the most consistently well-predicted departments. Taking a
closer look at these departments under the XGBoost model, we see that they are characterizied by
dramatic and sudden fluctuations that prove hard to predict, as shown in the example graphs of Sucre
and Cordoba in Figure 24 and Figure 23 respectively. With regards to well-predicted departments,
Vaupés is characterized by particularly low seizure quantities; thus, it is intuitive that it would have a
low MSE. However, Narifio and Magdalena both exhibit fairly large seizure quantities, but these
trends are still somewhat smoother and thus easier for the models to capture. Figure 25 shows the
department-specific time-series plots for Magdalena under XGBoost as an example. Encouragingly,

departments with the highest total quantities of cocaine seized over the eleven-year period - including
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Narifo, Valle del Cauca, Antioquia and Norte de Santander - were consistently well-predicted across
all three models, as shown in Figure 22 and 26. Given their prominence in Colombia’s trafficking
network, this suggest that the models are successfully identifying key drivers of sustained trafficking
activity, even as they struggle with highly volatile regions. More department-specific plots for Ridge

Regression and Random Forest can be found in Appendix I and Appendix J respectively.

@

— Actual

Actual vs Predicted - Sucre - XGBoost Actual vs Predicted - Cérdoba - XGBoost
Predicted

N A

Predicted
120
Month Number

120 130
Month Number

Figure 23: The Sucre time-series plot for XGBoost = Figure 24: The Cdérdoba time-series plot for XG-
demonstrates how dramatic changes prove partic- Boost is another "hard" department, characterized

ENC -
[ S

w
Log Monthly Quantity Seized (kg)

ok N w »

Log Monthly Quantity Seized (kg)

o L N

110 115 125

ularly difficult to capture.[10] by sudden and large variations.[10]

Actual vs Predicted - Magdalena - XGBoost Actual vs Predicted - Norte de Santander - XGBoost
§\5 ol — Actual E\ 9 — Actual
gt Predicted = Predicted
v 7.0 v
2 2
Zes =
Seo \/\V g \A
> >
£55 £6
250 s
?4.5 ‘33‘ 5

110

115 120 125 130 110 115 120 125 130
Month Number Month Number

Figure 25: The Magdalena time-series plot for XG-  Figure 26: The Norte de Santander time-series plot
Boost demonstrates how smoother and less dra- for XGBoost is impressive given that it is a major
matic trends prove easier to capture.[10] trafficking hotspot.[10]

In conclusion, error analysis identifies two major points. Firstly, despite efforts to address zero
values with transformations, this remains an area to explore further in the future, as demonstrated
in the residual plots. Secondly, while this paper’s extensive feature engineering certainly made
progress in addressing the challenge of volatile time-series data, as seen across the well-predicted
department examples and in the major improvement from the baseline, there is much room for further

exploration. This is particularly true for regions characterized by especially dramatic fluctuations.
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6. Discussion and Conclusion

6.1. Feature Importance Across Models:

Figure 27 displays a heatmap of the top 20 features across all three models, sorted by ranking. Across
all models, 6-month EMAs emerged as the most important feature, underscoring the predictive
value of recent trends in seizure quantities. EMAs effectively captured short-term fluctuations while
smoothing noise, making them particularly well-suited for modeling volatile patterns associated
with drug trafficking activity. Rolling minimum, maximum and average values also proved relatively
important, but less unanimously, with different features appearing in the top features of different
models. These features provided insights into the upper and lower bounds of seizure activity over
specified time windows, offering a more dynamic view of temporal patterns compared to static
lag values. Traditional lag features, while still prominent in Random Forest, were consistently
less important than the aforementioned engineered features, suggesting that the time-dependent
engineered features provided richer predictive signals than simple lags. Features capturing seasonal
trends were largely unimportant, as were cumulative sums, growth rates and momentum indicators.
These findings respond directly to prior work, such as Bazzi et al., offering EMAs and rolling
minimum, maximum and average values as a potential, or at least partial, solution to modeling
highly variable time-series data.[1]

Historical government enforcement activity, captured through the variable representing the
historical dismantling of drug labs, also proved highly influential across all three models. This
suggests that departments with a history of trafficking and government-sponsored anti-narcotics
operations remain susceptible to trafficking today, highlighting the resilience of trafficking networks.
Socioeconomic features, including events of homicides, urban and rural population ratios and (to
a lesser extent) events of displacement, consistently emerged as relatively important predictors
in the models, though less so than those already mentioned. These findings align with existing
literature emphasizing the connections between violence and trafficking patterns.[8] High homicide

rates and displacement events likely signal broader insecurity and weakened governance structures,
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Figure 27: Heatmap of top 20 features across models by ranking. Not used labels refer to features
that did not appear in model at all.[22]

creating conditions that trafficking organizations exploit to establish and expand their operations.
The importance of population ratios also suggests that both urban and rural areas play distinct
roles in trafficking dynamics. Urban centers may enable trafficking organizations to take advantage
of increased labor, infrastructure and transportation networks. Conversely, sparsely populated
rural areas may provide cover for drug production and storage, benefiting from lower visibility.
Interestingly, economic factors such as inequality and poverty levels were less influential in the
models than initially anticipated. While economic vulnerabilities are often cited as drivers of
trafficking, their relatively lower importance may indicate that other structural and geographic factors
play a more immediate role in shaping trafficking activity. It is also possible that economic factors
operate more indirectly, influencing broader patterns of violence and governance rather than serving
as direct predictors of trafficking.

With regards to geographic features, the Ocean_department feature, which identifies depart-
ments located along Colombia’s coast, proved important in both XGBoost and the Ridge Regression
model, though it was not included in Random Forest. This aligns with the existing literature suggest-

ing that trafficking routes often follow coastal pathways. Interestingly, the Border_department
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feature, which identifies departments along Colombia’s borders, did not appear in the top 20
features of any of the three models. With respect to one-hot-encoded department features, these
proved most important in the Ridge Regression model. However, Random Forest and XGBoost
placed little weight on department-identifying features, instead prioritizing time-dependent and
socioeconomic features. This shift may reflect their ability to generalize patterns across regions
rather than distinguishing between localized trends.

Overall, the feature selection process presented a notable challenge due to the large number
of variables and the presence of high multicollinearity among lags. Careful engineering of time-
dependent features paid off, as demonstrated by the dominance of EMA and rolling averages in
the final models’ feature importance results, but it also highlighted limitations when these features
began to dominate model behavior, particularly the 6-month EMA in the XGBoost model. Future
work could refine feature selection by incorporating more contextual predictors and spatial variables

to reduce dependency on time-based features.
6.2. Limitations and Future Work:

While this study achieved meaningful insights, several limitations remain. Perhaps the biggest
constraint was data availability, as the target variable data only dates back to 2012. Indeed, a
plan to incorporate recently released 2023 UN data proved challenging due to a lack of available
socioeconomic indicators for 2023, though this remains a promising avenue for future work once that
data becomes available. Additionally, expanding the socioeconomic dataset to include indicators
such as current law enforcement presence and road connectivity could prove helpful. With MSE
values stabilizing around 3.3 on the log scale, further progress may depend on integrating more
granular data and adopting advanced spatial and temporal techniques. For example, spatial lag
features, as employed in Zuckerman Daly’s work, could capture spillover effects across regions
and better account for interdependencies in trafficking routes.[24] Future work could also explore
more complex modeling techniques, including Vector Autoregression and ensemble approaches, to

capture temporal and spatial dynamics more effectively. Although this study prioritized manual
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feature engineering over automated modeling techniques, balancing these approaches may improve
predictions of particularly volatile trends. Finally, as discussed above, experimenting with further
transformations to reduce zero values in the target variable may also improve model performance.

In conclusion, this project represents a novel application of machine learning to analyze the
dynamics of drug trafficking in Colombia. It demonstrates the effectiveness of engineered features
in capturing complex patterns within time-series data while highlighting persistent challenges in
modeling extreme values, sudden fluctuations and regional variability. The results also reinforce
existing literature on the correlation of socioeconomic factors, particularly crime, population density
and historical enforcement activity, with trafficking patterns. Although the models successfully
captured broad trends, further refinements, particularly through expanded datasets, offer promising

avenues to deepen our understanding of trafficking networks and inform policy interventions.
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