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Abstract

Colombia plays a central role in the global cocaine trade, making the identification of drug

trafficking hotspots vital for disrupting supply chains and shaping effective policy. Despite its

real-world significance, machine learning approaches have not been widely applied to this problem.

This paper addresses that gap by leveraging regression models to predict trafficking hotspots

across Colombia’s 32 departments and capital district, using time-series data from the United

Nations Individual Drug Seizures Database. The best-performing model, XGBoost, achieves a

mean squared error of 3.288 on the log scale. Feature importance analysis highlights key factors

such as crime rates, government anti-narcotics operations and urban-rural population distributions.

Engineered time-dependent features - such as exponential moving averages and rolling statistics -

are particularly important for capturing trends, though sudden shifts in activity remain challenging

to predict. Ultimately, this paper underscores the value of combining rich socioeconomic data with

advanced feature engineering to model drug trafficking, offering key insights into its dynamics and

laying a strong foundation for future research.

1. Introduction

1.1. Motivation

Drug trafficking is a pervasive global issue, posing significant threats to public health, security

and governance. In 2022, the global supply of cocaine reached an all-time high of over 2,700

tons, reflecting a 20% increase from the previous year.[20] Colombia plays a central role in

this crisis, accounting for 65% of global coca bush cultivation in 2022, covering an estimated
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230,000 hectares.[19] Despite intensified coca eradication efforts, cocaine seizures continue to rise,

underscoring the resilience of trafficking organizations.[19] Addressing trafficking in Colombia is

therefore critical not only for national security but also for global efforts to curtail the cocaine trade.

Beyond identifying trafficking hotspots, this study also explores the socioeconomic conditions

associated with drug trafficking, offering insights into the structural vulnerabilities that trafficking

organizations exploit. High levels of poverty and unemployment, for instance, are believed to

facilitate the recruitment of ordinary citizens into criminal activities.[8] Trafficking has also been

linked to high levels of violence, providing “elements that facilitate the lethality of violence” including

access to weapons, training of personnel to use lethal violence and reliance on intimidation tactics to

control populations.[8] Finally, with access to vast financial resources, trafficking organizations can

facilitate the corruption of governments, undermining institutional efficiency and justice systems.[15]

Examining these socioeconomic dynamics is a critical question within political science and provides

an important framework for developing predictive models.

1.2. Goal

This paper employs regression models to address two primary goals: (1) to identify trafficking

hotspots and (2) to explore the socioeconomic conditions most correlated with drug trafficking.

Existing research in related domains serves as a foundation for this study. Cipriano et al. examined

the determinants of illegal coca production in Peru, focusing primarily on the influence of government

policies, such as eradication efforts.[2] Zuckerman Daly analyzed the conditions driving organized

violence in Colombia, adopting a subnational approach but focusing on predicting violence rather

than drug trafficking.[24] Bazzi et. al used machine learning to predict violence in Colombia and

Indonesia, highlighting the distinct challenges of modeling highly fluctuating time-series data.[1]

Building upon these studies, this paper is novel in four distinct ways. First, it shifts focus to

predicting drug trafficking levels by employing regression models and leveraging the United Nation’s

Individual Drug Seizures Database for the years 2012-2022. Secondly, following Zuckerman Daly’s

work, it adopts a subnational lens, analyzing Colombia’s 33 administrative departments (including
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its district capital) rather than viewing the country as a single unit. Third, it dramatically expands

the scope of socioeconomic features considered by aggregating data from five distinct databases,

thus developing a novel and comprehensive dataset. Finally, to address the complex time-series

prediction task at hand, it leverages robust feature engineering to account for temporal dependencies

and improve the performance of Linear Regression, Random Forest and XGBoost.

This paper evaluates model performance using Mean Squared Error (MSE), Root Mean Squared

Error (RMSE) and R-squared ('2). The baseline linear regression model established an MSE of

6.01 on the log scale and an '2 of 0.42, while the best-performing developed model, XGBoost,

achieved an MSE of 3.288 on the log scale and an '2 of 0.68. Important socioeconomic features

include homicide rates, historical government enforcement activity and urban and rural populations.

Key engineered features include exponential moving averages (EMAs) alongside rolling minimum,

maximum and average values. These findings underscore the potential of combining rigorous feature

engineering with comprehensive socioeconomic data to capture complex patterns in drug trafficking

patterns. The remainder of this paper is structured as follows: Section 2 reviews related work and

identifies gaps in existing methodologies; Section 3 outlines the study’s rationale and novel methods;

Section 4 details the implementation process; Section 5 evaluates model performance; and Section 6

discusses conclusions, limitations and pathways for future research.

2. Background and Related Work

While predicting future drug trafficking levels based on the UN Individual Drug Seizures Database

is a novel task, this paper draws on an abundance of previous work to inform its approach. Existing

literature contributes in two key areas: (1) identifying factors associated with trafficking and (2)

outlining methodologies for predictive modeling.

2.1. Identifying Factors Associated with Drug Trafficking

Existing research offers valuable insights into the socioeconomic, geographic and governance-

related conditions that shape trafficking patterns. For instance, Jiménez-García et al. explore

the relationship between drug trafficking, violence and socioeconomic vulnerabilities in Pereira,
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Colombia.[8] The study aggregates government statistics from 2010 to 2019, drawing on data

from the Colombian National Police, the National Planning Department and the Mayor’s Office of

Pereira. Using regression-based supervised learning models, it identifies strong correlations between

violence, poverty and trafficking.[8] However, their analysis is limited to a single city, restricting

its generalizability to broader regional or national contexts. Furthermore, they focus primarily on

correlation rather than prediction. I address these limitations by adopting a predictive modeling

framework that generalizes across all administrative departments and incorporates temporal features

to capture dynamic changes in trafficking patterns. Despite these limitations, Jiménez-García et.

al’s findings underscore the relevance of crime, poverty and governance indicators, which I therefore

include as features in this paper.

Several other studies also provide valuable insights into the factors associated with drug

trafficking, though they do not directly address the task of prediction, and therefore inform this

paper’s data collection. For example, Singer explores the societal impacts of drug trafficking,

including its role in fostering violence, corruption and declining trust in government institutions.[15]

While Singer does not propose methodologies for prediction, the emphasis on corruption as a

key enabler of trafficking highlights the importance of incorporating corruption and governance

indicators as features in this paper’s predictive framework. Similarly, Thoumi examines the structural

conditions that facilitate drug economies in Colombia, emphasizing the role of weak governance,

economic crises and unemployment as enabling conditions for illicit drug industries.[17] Thoumi

also highlights the role of trafficking routes and geography, through which coastal and border regions

emerge as high-risk areas.[17] Indeed, the United Nations 2024 World Drug Report also notes a

shift toward maritime trafficking in recent years, with more than 80% of cocaine shipments directed

toward the coast.[20] On land, it illustrates that trafficking routes span northward towards Venezuela

and the Caribbean, eastward toward Brazil and southwest toward Ecuador.[20] These trends confirm

that departments along Colombia’s coast or borders experience heightened trafficking activity, thus

justifying the inclusion of both a border and coastline department feature in this paper’s framework.

While the UN report provides a global overview of trafficking trends, it lacks specific regional
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analyses within Colombia. I address this gap by instead focusing on department-level patterns to

provide a more nuanced understanding of trafficking dynamics.

Finally, Saab and Taylor document the extensive historical involvement of both the Revolutionary

Armed Forces of Colombia (FARC) and paramilitary groups in drug trafficking.[14] Although the

2016 peace accords have since reduced their influence, the historical presence of these groups

may have established social infrastructures that continue to shape trafficking patterns today. I thus

incorporate features that account for historical FARC and paramilitary activity to ensure these

enduring influences are captured in the predictive model.

Together, these studies provide critical insights into the factors driving drug trafficking,

informing this paper’s data collection and scope. By integrating socioeconomic, geographic and

governance-related variables, I thus shift focus to building a predictive model to empirically test

these relationships.

2.2. Outlining Methodologies for Predictive Modeling

Given the lack of existing literature on modeling drug trafficking specifically, I draw heavily on

studies that model related political phenomena, such as violence and illegal crop cultivation.

Cipriano et. al offers perhaps the closest parallel by analyzing the determinants of illegal

coca production in Peru.[2] This study uses the Peruvian government’s National Commission

for Development and Life without Drugs (DEVIDA) Database, which includes extensive data on

government eradication efforts and coca cultivation levels. It applies Lasso regression, Ordinary

Least Squares and Vector Autoregression to assess the impact of government enforcement policies.

Its findings reveal a weak negative relationship between eradication efforts and coca cultivation and

a positive correlation between coca base paste confiscations and coca cultivation, suggesting that

enforcement policies alone may be insufficient to deter illicit activity.[2] While Cipriano et. al’s

work focuses narrowly on government enforcement policies, I expand the scope of structural factors

examined by also incorporating economic, governance and crime-related indicators into its predictive

framework. Furthermore, whereas Cipriano et. al models coca cultivation, a more stationary
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phenomenon, I predict trafficking volumes, which are inherently more dynamic and susceptible to

fluctuations over time and space. Addressing these complexities thus requires advanced feature

engineering to incorporate temporal dependencies alongside socioeconomic trends.

Zuckerman Daly investigates the conditions favoring organized violence at the subnational

level on Colombia.[24] Using a dataset of 274,428 municipality-month observations, she applies

regression techniques and incorporates spatial lag features to capture how prior violence influences

future outbreaks. The study finds that areas with strong pre-existing organizational structures

and histories of past mobilization are more prone to persistent violence.[24] A key takeaway of

Zuckerman Daly’s work is its subnational lens, which emphasizes the importance of analyzing

variations at the municipality level rather than treating Colombia as a homogeneous entity. This

approach acknowledges that political, economic and social factors vary substantially across regions,

and that patterns of violence often emerge in pockets rather than uniformly across the state.[24] Since

drug trafficking operates under similarly localized conditions, I adopt Zuckerman Daly’s subnational

approach. However, while Zuckerman Daly employs binary classification for violence, I predict

trafficking levels on a continuous scale, necessitating richer feature engineering of time-dependent

variables and an expanded scope of socioeconomic features.

Finally, Bazzi et al. examine the use of machine learning to predict violence in Colombia and

Indonesia.[1] For Colombia, the study draws on violence data from 1988 to 2005 provided by the

Conflict Analysis Resource Center and combines it with socioeconomic data, including population

density, government revenues, military presence and geographic features. Testing a range of machine

learning algorithms - including Lasso regression, random forests and neural networks - the authors

predict violence hotspots one year ahead based on historical patterns and socioeconomic variables.

The study finds that machine learning models are effective at identifying persistent hotspots of

violence but face challenges in forecasting sudden outbreaks or escalations.[1] The inclusion of

lagged dependent variables, socioeconomic features and geographic characteristics, particularly

terrain ruggedness, improves predictive accuracy, highlighting the importance of accounting for both

historical patterns and regional characteristics. However, the study also underscores the difficulty of
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predicting abrupt deviations, reflecting the limitations of current modeling techniques.[1] I adapt

Bazzy et al.’s methodology, shifting focus to predicting drug trafficking patterns rather than violence.

I use extensive subnational socioeconomic data, tailoring Bazzy et. al’s approach to the specific

dynamics of trafficking by incorporating additional features related to violence, crime, corruption

and governance. Directly responding to the identified challenge of forecasting sudden changes in

time-series data, I employ extensive feature engineering to expand the range of time-dependent

variables incorporated and enhance predictive accuracy.

Together, these studies provide a strong methodological foundation for this paper’s approach.

They underscore the value of adopting a subnational lens to capture localized patterns and highlight

the potential of machine learning techniques to model complex social dynamics, including violence

and illicit crop cultivation. By building on their frameworks, this paper advances predictive modeling

techniques for drug trafficking, addressing critical gaps in prior research and tailoring methodologies

to the unique dynamics of trafficking in Colombia. In doing so, I also hope to advance predictive

modeling techniques for complex time-series data more broadly, in particular by testing the power

of engineered time-dependent features.

3. Approach/Methods

3.1. Focus and Lens

This paper builds on methodologies from related fields, such as violence and coca cultivation

modeling, and shifts focus to predicting drug trafficking levels - an area that remains largely

unexplored. To achieve this, I adopt a subnational lens, analyzing Colombia’s 33 administrative

departments. This approach recognizes that drug trafficking operates as a network of localized

activities, shaped by regional conditions, governance structures and geographic factors, rather than

uniformly across the country.

Much of the existing research, including prominent studies by organizations such as the United

Nations, treats Colombia as a single entity when analyzing drug trafficking trends. While this

national-level perspective is valuable for understanding overarching patterns, it risks obscuring
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critical regional variations. Colombia’s diverse geography - from remote rural areas to densely

populated urban centers - and disparities in socioeconomic development and governance create

distinct regional vulnerabilities to trafficking. By examining subnational data, this study allows

for the identification of regional patterns that may be masked by national-level aggregation, thus

offering a more granular understanding of trafficking dynamics.

3.2. Aggregated Socioeconomic Dataset

A major novelty of this paper lies in its expanded socioeconomic feature set, which integrates

data from five distinct datasets to compile a comprehensive range of structural factors relevant

to drug trafficking dynamics. These features encompass violence indicators such as events of

homicide, displacement, threats, extortion and sexual crimes; economic conditions such as income

inequality and poverty levels; and governance metrics such as corruption and revenue. Education

and public health variables - including life expectancy, average years of education and infant

mortality rates - are also included to capture broader measures of public health and development.

Additionally, population statistics - such as urban and rural population densities - are incorporated

to account for differences in infrastructure and accessibility that may influence trafficking routes

and hubs. Geographical features further enrich the dataset, identifying departments located along

coastlines or international borders to capture risk factors associated with maritime and cross-border

trafficking routes. Recognizing historical context, this paper also includes variables indicating the

presence of paramilitary groups and the FARC, reflecting areas that have experienced prior armed

conflict and may retain structural vulnerabilities to organized crime. Similarly, data on historical

government-sponsored anti-narcotics operations is also included. In total, the dataset incorporates

over 50 socioeconomic variables, drawing on existing literature to encompass a wide range of

factors believed to influence trafficking patterns. By combining diverse data sources and capturing

both socioeconomic and geospatial dynamics, this dataset aims to improve predictive accuracy

while offering deeper insights into the conditions that sustain trafficking networks. Moreover, this

approach addresses gaps in prior studies that relied on narrower feature sets, enabling a more holistic
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modeling framework that integrates economic, social, political and spatial dimensions of trafficking

activity.

3.3. Rigorous Feature Engineering

Drug trafficking is an inherently complex and dynamic phenomenon, characterized by sharp

fluctuations and sudden changes that make forecasting particularly challenging. Prior studies in

related domains, such as Bazzi et al.[1], have highlighted the difficulty of modeling abrupt shifts

in time-series data and often rely solely on simple lagged dependent variables. While effective

for capturing basic temporal patterns, such approaches may fail to account for the full range of

variability and volatility present in complex time-series data. Thus, this paper significantly expands

the use of time-dependent features. In addition to lagged features, it incorporates rolling averages

and exponential moving averages to smooth short-term fluctuations; rolling maximum, minimum,

range and standard deviation values to quantify variability and volatility over time; cumulative sums

to capture long-term trends; growth rates and momentum indicators to reflect sudden changes; and

seasonal indicators to capture cyclical trends in trafficking levels. In total, over 30 time-dependent

features are engineered from the dependent variable, allowing the models to track both gradual

trends and abrupt shifts in an effort to address the forecasting challenges identified by Bazzi et al.[1]

3.4. Model Training and Evaluation Overview

To predict trafficking levels, this paper develops three regression models: Linear Regression, Random

Forest and XGBoost. A simple linear regression model serves as the baseline model and excludes

the engineered time-dependent features, providing a useful benchmark for assessing the added value

of incorporating more advanced features and techniques. I then leverage feature engineering, feature

selection, regularization and hyperparameter tuning to develop three more complex models with

increased predictive power: Ridge Regression, Random Forest and XGBoost. This choice of models

provides several benefits. First, the Ridge Regression model offers a direct comparison against the

baseline, testing the impact of adding engineered features and regularization. Random Forest was

selected for its ability to handle non-linear relationships and high-dimensional data, thus potentially
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allowing more features to be included without risking overfitting. XGBoost is also highly effective

for complex, non-linear patterns, thus making it another suitable choice for the task at hand. Finally,

all three models offer insights into feature importance, allowing for more interpretable results.

To evaluate model performance, I utilize three key metrics, which are described in more detail

in Section 4.7: MSE, RMSE and '2. Beyond these metrics, residual plots are also analyzed to detect

systematic errors. I conduct feature importance analysis to determine both the socioeconomic factors

most correlated with drug trafficking and the engineered features most useful in forecasting complex

time-series data. I also employ department-level error analysis, examining regional variations to

determine where the model is most and least successful.

4. Implementation

Figure 1: Flowchart illustrating the key implementation steps

Figure 1 provides an overview of the implementation steps spanning data preparation, model

training and evaluation, which are detailed in the following subsections.

4.1. Data Collection:

4.1.1. Dependent Variable: The dependent variable in this study - quantity of cocaine seized -

is gathered from the UN Individual Drug Seizures Database for the years 2012–2022.[18] This

database provides detailed, standardized information on drug seizures, including quantity, substance

type, date and geographic location. By capturing actual interdiction events, it offers a direct proxy

for trafficking activity at specific times and places. While seizure data inherently reflects law
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enforcement activity and may be biased toward areas with stronger enforcement, it remains one of

the most comprehensive and consistent datasets for estimating trafficking trends over time.

4.1.2. Socioeconomic Features: In Section 2.1, I outlined the existing literature that informed

the socioeconomic factors included in this study. Finding socioeconomic data at the department

level - as opposed to national-level data - posed a significant challenge and required aggregating

data from five distinct databases to construct a comprehensive dataset. The University of Los

Andes Data Center’s Panel Municipal Database (CEDE) provides detailed municipal-level data

on government revenues, population statistics and various crime rates, making it particularly

valuable for analyzing subnational variations in governance and security conditions.[21] It also

includes data on historical FARC and paramilitary presence, coca eradication efforts and major

government-sponsored antinarcotics operations, enabling the incorporation of conflict histories and

enforcement measures as predictive variables. To account for corruption, I used data from Monitor

Ciudadano de la Corrupción, a platform managed by Transparency International, which tracks

institutional weaknesses and instances of corruption across Colombia.[9] Broader socioeconomic

and development indicators were extracted from the Global Data Lab’s Subnational Area Database,

which provides internationally standardized measures of life expectancy, education, economic

inequality, poverty and public health.[4] Homicide data was sourced from the Colombian National

Police Department’s annual reports, which listed individual homicides by location and date.[13]

Finally, demographic and economic data including poverty rates and population density were

obtained from Colombia’s National Administrative Department of Statistics (DANE).[3] This

database also provided breakdowns of municipalities contained within administrative departments,

which was extremely useful during data processing. In total, this paper compiles over 50 variables

from these sources. The resulting socioeconomic dataset spans 2012-2022, aligning with the UN

seizure data and encompassing all 33 administrative departments in Colombia.
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4.2. Data Exploration:

Data exploration of the training data consisted of gathering summary statistics, graphing distributions

and generating correlation matrices using the Pandas, Seaborn and Plotly libraries, with the assistance

of ChatGPT.[23, 22, 12, 10]

4.2.1. Dependent variable: The dependent variable in this analysis, Monthly Quantity Seized

(kg), exhibits high variability and substantial skewness, as highlighted by the boxplot in Figure

2.[10, 22] The raw values range from 0 to 21,562 kg, with a mean of 652.89 kg and a standard

deviation of 1,622.90 kg.[23] Notably, 25% of the data lies below 1.29 kg, while the 75th percentile

reaches 538.92 kg, reflecting a right-skewed distribution. This pattern suggests the need for a log

transformation, which is discussed in section 4.3.4. The target variable also demonstrates significant

regional variations, as shown in Figure 3. Departments such as Nariño, Valle del Cauca, Antioquia

and Norte de Santander account for the largest quantities seized, while departments like Vaupés,

Guainía and Arauca report minimal seizures. Temporal analysis of monthly trends also indicates

high variability over time, with some months exhibit wider interquartile ranges and larger outliers,

reflecting peaks in activity. This suggests the need for rigorous feature engineering to help capture

these complex patterns. For more graphs exploring the dependent variable data, see Appendix B.

Figure 2: Boxplot shows high variability of untrans-

formed target variable across the training set

Figure 3: Target variable shows substantial re-

gional variation across the training set

4.2.2. Socioeconomic Features: Socioeconomic features also reveal wide variations across regions.

For example, annual displacement events range from 0 to over 128,000, and annual homicides reach
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a maximum of 3,130, underscoring regions of severe instability.[23] Many features exhibit skewed

distributions with substantial outliers, suggesting the need for data transformations. To further

explore relationships between features, I employed correlation matrix analysis using the Seaborn

library.[22] Example correlation matrices can be found in Appendix D, and they illustrate two main

points. Firstly, given the high correlations among several features, multicollinearity could pose

challenges for modeling, suggesting the need for rigorous feature selection. Secondly, the relatively

low correlations between most features and the dependent variable suggests that models such as

XGBoost and Random Forests may perform better by leveraging decision trees to capture complex

patterns that linear correlations alone cannot fully explain. From the initial exploration however,

events of homicide, displacement, threats and other crimes exhibit the strongest linear correlation

with the target variable.

4.3. Data Processing:

Data processing consisted of six major steps, as detailed below.

4.3.1. Map data to departments: One of the main challenges with the UN Individual Drug Seizure

Database was the inconsistency in geographic reporting, which varied between city, municipality and

department levels depending on the year. Further complications arose from inconsistent spellings

and the use of accent marks, leading to difficulties in standardizing location names. To resolve

these issues, I cross-referenced all reported cities and municipalities with official lists provided by

DANE. Unicode normalization techniques were used to remove accents and standardize spellings,

and any remaining discrepancies were manually corrected.[16] A similar process was carried out for

the CEDE dataset, which reported data at the municipality level. For crime events and population

statistics, I aggregated values across municipalities to produce department-level data.

4.3.2. Convert to month time-step: While the UN Individual Drug Seizure Database provides

seizure dates at the daily level, most socioeconomic data is reported annually. To address this

mismatch, I tested multiple potential time-steps, including daily, weekly, biweekly, monthly and

yearly intervals. However, smaller time steps led to a proliferation of zero values, as drug seizures
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are sporadic and do not occur daily or even weekly in some departments. To balance the need to

minimize zero values with having sufficient temporal granularity, I ultimately selected monthly

time-steps. This approach produced 132 month observations per department over the eleven-year

period, thus totaling 4,356 data points, while keeping the number of zero values manageable. A

detailed breakdown of zero values for each potential time-step is provided in Appendix C, providing

an empirical justification for the ultimate selection of months. The still relatively significant number

of zeroes in the target variable data is discussed in more detail in Section 4.3.4

4.3.3. 60-20-20 data split: The third step involved splitting the data into training, validation and

test sets, using a 60-20-20 split. The training set included the first 82 months, the validation set

included the next 25 months and the testing set included the final 25 months of data. Care was taken

throughout the model training process to keep the test data isolated. All scalers were fit only on the

training data, and data exploration, hyperparameter tuning and feature selection were performed

exclusively on the training set, ensuring that test data remained unbiased for evaluation. I also

experimented with time-series expanding window cross-validation, which incrementally expanded

the training data by adding observations on each fold while validating on the subsequent period.[7]

However, the resulting MSEs decreased with each iteration, suggesting that larger training sets

improved performance (see Appendix F for results). Due to the limited amount of data available, I

ultimately prioritized using the largest possible training set and thus did not employ cross-validation.

Indeed, because of the limited data size, I actually saw an improvement in performance between

using 60% of the data during model training and using 80% of the data during final testing. However,

should more data become available in the future, cross-validation may prove more useful.

4.3.4. Log Transformation of Target Variable: To reduce the high variability of the target variable,

I used np.log1p to apply the log transformation log(1 + G).[5] The transformed target variable, Log

Monthly Quantity Seized (kg), has a mean of 3.82, a standard deviation of 2.84 and a range of 0

to 0.998, producing a more normalized distribution that reduced the influence of extreme outliers.

Figure 4 shows a boxplot of the transformed data, demonstrating how the distribution of values

became more balanced in comparison to Figure 2.[10, 22] One shortcoming of this transformation is
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Figure 4: After log transformation, the target variable shows a much more balanced distribution with

fewer outliers

that it preserved zero values by treating log(0) as 0, which accounted for 9.66% of the target variable

data. An alternative transformation, which instead added a small constant by computing log(G + 0.1)

was tested in an effort to reduce this data imbalance. However, this approach produced negative

values that lacked clear real-world interpretation and disrupted the distribution by mapping small

quantities to values as low as -4.61. Models trained with this transformation performed substantially

worse, as summarized in Appendix E, and thus this method was not pursued further.

4.3.5. Aggregating Engineered Features and One-Hot Encoding Departments: Department

identifiers were one-hot encoded, with each column representing a specific department and taking a

value of 1 if the row corresponded to that region.[23] One column was dropped in order to avoid full

multicollinearity. I also aggregated engineered features, which are discussed in Section 4.4.

4.3.6. Feature standardization via Standard Scaler: Data exploration revealed significant variation

in feature distributions and scales, with many containing outliers. This raised the question of

whether standardization or normalization was more appropriate. Normalization, which scales

values to a fixed range, risked compressing most values and amplifying the impact of outliers. In

contrast, standardization, which centers data at 0 with a variance of 1, is more robust to outliers.

Although tree-based models like XGBoost and Random Forest are scale-invariant, standardization

can still help prevent certain features from exerting disproportionate influence. I therefore applied

StandardScaler to all features except the target variable, fitting it only on the training data to

avoid data leakage.[11, 10] However, because some features did not follow a Gaussian distribution

and perhaps might benefit from normalization, I also ran the models with data normalized using
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MinMaxScaler for comparison.[11] The results showed minimal differences in performance metrics

(see Appendix G), so all results presented in the main paper are based on standardized data.

4.4. Feature Engineering:

Bazzy et al. notes the challenges of modeling volatile time-series data.[1] To address this

challenge, I employed robust feature engineering of time-dependent features. Pandas offers grouping,

transformation and shifting functions that enabled these features to be easily computed and aggregated

to the dataset.[23] I also referenced time-series articles and textbooks to generate ideas for potential

engineered features, and I used ChatGPT to help write the code for them.[10, 7, 6] All time-dependent

features are shifted and the first six months of data are dropped to prevent data leakage.

I began by engineering traditional lagged features, with the dependent variable lagged by 1

through 6 months, to capture short-term influences. In addition, I implemented several more complex

time-series transformations to capture both short-term fluctuations and long-term trends in the

dependent variable. Rolling averages and exponential moving averages - which weight more recent

months more heavily - were computed to smooth sudden variations and highlight sustained trends.

Rolling maximum, minimum, range and standard deviation values were added to quantify variability

and volatility over time, capturing the tendency for seizures to spike unpredictably. Cumulative

sums were included to model cumulative trends and longer-term accumulation of trafficking activity.

Growth rates and momentum features were calculated to reflect short-term directional changes in

seizures. I also engineered seasonal features for winter, spring, summer and fall to capture cyclical

trends. Altogether, over 30 time-dependent features were engineered from the dependent variable,

offering a comprehensive approach to addressing the challenge of complex time-series data.

As discussed in Section 2.1, I also engineered geographic features. Coastline departments

include Nariño, Cauca, Valle del Cauca, Chocó, Antioquia, Córdoba, Sucre, Bolívar, Atlántico,

Magdalena and La Guajira. Border departments include Nariño, Putumayo, Amazonas, Vaupés,

Guainia, Vichada, Arauca, Norte de Santander, Cesar, La Guajira and Chocó.
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4.5. Feature Selection:

Given the large number of features initially gathered and the highly correlated features revealed

in data exploration, conducting feature selection was crucial to narrowing down the feature set.

The feature selection process consisted of two steps and was run on the training and validation set:

(1) correlation matrix analysis to remove redundant features and reduce multicollinearity and (2)

recursive feature selection tailored to each model.

4.5.1. Correlation Matrix Analysis: I first grouped features by topic, separating them into

socioeconomic, governance, crime and time-dependent categories. I then generated correlation

matrices for each group to identify features with high correlations to one another, examples of

which can be found in Appendix D.[22] When removing highly correlated features, I retained

those that exhibited stronger correlations with the target variable. After this filtering step, I

combined all features across groups and calculated the Variance Inflation Factor (VIF) to further

assess multicollinearity, ensuring no remaining features had a VIF exceeding 10.[10] Notably,

time-dependent features - especially EMAs - exhibited high correlations both with one another

and with the target variable. While these features significantly improved model performance, they

also tended to dominate feature importance, making it challenging to balance their predictive value

without over-relying on them. To address this, I combined correlation analysis with recursive feature

selection to refine the feature set further, as described below.

4.5.2. Recursive Feature Selection: For each model, I employed recursive feature selection to

identify the most important features. For Linear Regression and Random Forest, I used scikit-learn’s

Recursive Feature Elimination function and code generated from ChatGPT.[10, 11] For XGBoost,

recursive feature selection was implemented using a manual while-loop generated by ChatGPT,

as XGBoostRegressor is not compatible with scikit-learn’s RFE function.[10] To ensure balanced

feature importance and avoid domination by time-dependent features, I applied a two-step RFE

process. First, I ran RFE on socioeconomic features alone to isolate structural predictors. Then, I

combined the top socioeconomic features with time-dependent features and re-ran RFE to determine

the top overall features. This iterative process incorporated multicollinearity analysis at each step to
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Figure 5: Feature selection results on validation data before removing highly correlated time-

dependent features. The inflation of the 6-month EMA highlights the need for rigorous multicollinear-

ity analysis

ensure feature importances were not inflated, particularly for Linear Regression, as Random Forest

and XGBoost can better handle multicollinearity due to their tree-based structures. Details on the

selected features and their importance are presented in Section 5.

The rationale for this iterative process is illustrated in Figure 5, which highlights an early

challenge encountered during feature selection. As shown, including a large number of time-

dependent features led to dominance by the 6-month EMA in Linear Regression, attributed to high

multicollinearity. This observation informed the subsequent refinement of the process, resulting in

the removal of redundant time-dependent features and the inclusion of department-level structural

features in the final set.

4.6. Hyperparameter Tuning and Regularization:

4.6.1. Linear Regression: To improve the performance of Linear Regression, I experimented

with three variations: Ridge, Lasso and Elastic Net Regression. Ridge Regression employs

L2 regularization, shrinking coefficients toward zero without eliminating features, making it

particularly effective for handling highly correlated predictors. Lasso Regression, in contrast, uses

L1 regularization, which sets some coefficients to exactly zero, effectively performing feature

selection. Elastic Net combines L1 and L2 penalties, balancing the benefits of both methods. Using

code generated from ChatGPT and scikit-learn’s Ridge, Lasso, and Elastic Net functions, I tested
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various regularization strengths (alpha) for Ridge and Lasso.[10, 11] For Elastic Net, I also varied

the L1 ratio to determine the optimal balance between Ridge and Lasso components. Specific

parameter ranges and results are summarized in Section 5.

4.6.2. Random Forest: For Random Forest, I tuned 4 key parameters. The first parameter,

n_estimators, controls the number of trees in the forest, with more trees generally improving

model performance and increasing computational cost. The second parameter, max_depth, controls

the maximum depth of each tree. Deeper trees can capture complex patterns but are prone

to overfitting, particularly when the training data is noisy. To mitigate overfitting, I adjusted

min_samples_split, which sets the minimum number of samples required to split an internal

node, and min_samples_leaf, which specifies the minimum number of samples required to form

a leaf node. Higher values for these parameters reduce the complexity of the trees and help improve

generalization. I first used GridSearch to explore a range of values for these hyperparameters and

then manually fine-tuned them, checking values one step in either direction to ensure that the optimal

hyperparameters had been selected.[11, 10] Results are discussed in Section 5.

4.6.3. XGBoost: For XGBoost, I focused on tuning n_estimators, learning_rate, max_depth

and min_ child_weight. The n_estimators parameter defines the number of boosting rounds

or iterations. Learning_rate controls the step size during boosting, determining how quickly the

model learns. Lower learning rates help the model converge more slowly, potentially leading to better

generalization when paired with an increased number of boosting rounds. Max_depth specifies

the maximum depth of each tree, similar to Random Forest. Finally, min_child_weight sets the

minimum sum of instance weights required to split a node. This parameter acts as a regularization

tool, discouraging the model from creating overly specific splits and encouraging broader feature

utilization. As with Random Forest, I first used GridSearch to explore hyperparameter ranges and

then manually adjusted values to confirm optimal performance.[11, 10] Hyperparameter tuning

results are presented in Section 5.
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4.7. Evaluation:

To comprehensively evaluate model performance, I utilized both quantitative metrics and qualitative

analyses to assess different aspects of prediction capacity and interpretability. Quantitative metrics

include MSE, RMSE and '2. MSE measures the average squared difference between predicted

and actual values, penalizing larger errors more heavily. This property is particularly important

given the variability in the target variable, as it ensures that extreme mispredictions are appropriately

reflected in the evaluation. Because the target variable is log-transformed, reporting MSE on both

the log and original scales enhances interpretability by allowing a clear understanding of prediction

errors relative to the untransformed data. RMSE complements MSE by taking its square root, which

aligns the metric with the original scale of the data, and offers an more interpretable understanding

of model performance in real-world units. '2 evaluates the proportion of variance explained by

the model, offering insights into the model’s overall capacity to capture patterns within the data.

By combining '2 with MSE and RMSE, I aimed to balance measures of absolute error with an

understanding of the model’s explanatory power.

In addition to these quantitative metrics, I also incorporate qualitative analyses of feature

importance, residual plots and department-level patterns. Feature importance analysis helps

identify key socioeconomic and time-dependent factors correlated with drug trafficking, offering

valuable insights for both model evaluation and policy implications. Importantly, comparing feature

importance rankings across models highlights consistent predictors, reinforcing their significance,

while differing trends suggest an area for further investigation. I also used residual plots to

examine patterns in prediction errors, providing qualitative insights into potential model biases.

To complement this, department-level error analysis was conducted to assess regional variations

in model performance. This analysis highlights whether the model performs consistently across

geographic areas or if certain departments experience systematically higher prediction errors,

which may reflect underlying regional differences. By combining these quantitative and qualitative

evaluation methods, I aimed to develop a comprehensive understanding of the models’ strengths and

limitations.
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5. Evaluation

Table 1: Comparison of model performance metrics with XGBoost performing best

Table 1 summarizes the final results of the models, which differ slightly from my final presentation

due to the incorporation of additional data and refinement of the feature selection and hyperparameter

tuning process. Because this project’s dataset is novel and has no immediate predecessors to compare

results against, I use a simple Linear Regression model as my baseline, which does not leverage

engineered features or regularization. Of the three developed models, XGBoost performs the best,

with a MSE of 3.288 on the log scale and an '2 value of 0.683. However, all three models are

relatively close in their performance and dramatically improve the MSE of the baseline model

by a margin of about 375 kg2 on the original scale. Interpreting the RMSE, this means that on

average, predictions measure within about 5 kg of their actual value, an improvement of 5 kg from

the baseline model. Furthermore, the '2 value also dramatically improved from 0.42 to just under

0.7, indicating that the models are better able to capture patterns within the data. These results

indicate that the use of engineered features and more complex models dramatically improve the

predictive capacity of the models. In the following subsections, I detail the specific results for each

of the models and conclude with error analysis.
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5.1. Baseline Linear Regression:

5.1.1. Feature Selection Results: Figure 6 shows the feature selection results for the baseline Linear

Regression model on the training and validation sets. Note that engineered features were excluded

from this model, so only socioeconomic features are included. Important features thus include

urban and rural population statistics, historical government enforcement activity (captured in the

feature Historical Dismantling Labs (1993-2008), life expectancy and gender development

(captured in the indicator GDI). No regularization was utilized for the baseline.

Figure 6: Feature selection results for Baseline Linear Regression on training and validation sets,

excluding engineered features.

5.1.2. Testing Results and Residual Plots: As shown in Table 1, the baseline Linear Regression

model performed quite poorly, achieving a test MSE of 6.001 on the log scale. Indeed, when

compared to the other models, the poor performance of this model highlights the importance of the

time-dependent engineered features, which dramatically improved performance once incorporated

into the subsequent models. Examining the residual and actual versus predictd value plots in Figure

7, the clear diagonal line illustrates that zero values were consistently overpredicted, which is

discussed in more detail below.
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Figure 7: Residual Plot and Actual versus Predicted Value Plot for Baseline Linear Regression.[10]

5.2. Ridge Regression (Enhanced Linear Regression Model):

5.2.1. Feature Selection and Hyperparameter Tuning Results: Figure 8 shows the feature

selection results for Linear Regression on the training and validation sets.[10] Notably, the resulting

feature importance graph is far more balanced than Figure 5, as correlated features were successfully

removed. The 6-month EMA emerged as the dominant feature, along with many one-hot-encoded

department features. Table 2 summarizes the results of different regularization experiments, with

Ridge Regression with alpha = 10.0 performing best, achieving a log validation MSE of 3.781.

The strong performance of Ridge suggests that the inclusion of multiple correlated features, rather

than strict sparsity, enhances prediction accuracy.

Figure 8: Feature selection results for enhanced Linear Regression on training and validation sets
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Table 2: Comparison of different regularization techniques for Linear Regression evaluated on

training and validation sets, with Ridge Regression with alpha = 10 performing best

Figure 9: Residual plot for Ridge Regression.[10]

Figure 10: Actual versus predicted plot for

Ridge.[10]

5.2.2. Testing Results and Residual Plots: As detailed in Table 1, the Ridge Regression model

achieved a test MSE of 3.364 on the log scale, thus substantially outperforming the baseline linear

regression model but slightly underperforming in comparison to Random Forest and XGBoost. This

indicates that the incorporation of regularization and engineered features significantly boosted model

performance, as the test MSE dropped by about 375 kg2 between the baseline and ridge regression

models, and the '2 value increased from 0.42 to 0.675. Taking a closer look at the residual plot for

the Ridge Regression model, Figure 9 shows a general pattern where residuals are distributed above

and below zero, but it also highlights a distinct group of points that form a downward diagonal below

the zero line. Combined with the actual versus predicted values plot shown in Figure 10, we see that

these correspond to zero values, which the model tends to overpredict, as in the baseline model. As

the actual values get larger, there also seems to be a slight trend of underprediction, as seen by the

slightly denser cluster of points below the line. While most points are clustered relatively close to the

0 residual line (certainly, most points are well within an MSE of 3 on the log scale), there are some
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outliers with much higher residuals. These outliers - perhaps corresponding to certain departments -

are particularly poorly predicted, thus compromising the overall performance of the model.

5.2.3. Feature Importance: Feature importance analysis in Figure 11 reveals the dominance of the

6-month EMA feature, indicating its critical role in shaping predictions. Among socioeconomic and

geographic variables, department presence along a coastline, historical government enforcement

activity (Historical Dismantling Labs) and urban population stand out as strong predictors.

Department-level features are also highly influential, especially for Arauca, Boyacá, Caquetá and

Sucre, perhaps reflecting the model’s reliance on identifying distinct patterns for certain regions.

Figure 11: Ridge Regression feature importance graph shows a heavy dependence on 6-month EMA

and department-identifying features.

5.3. Random Forest:

5.3.1. Feature Selection and Hyperparameter Tuning Results: The feature selection results in

Figure 12 show that Random Forest retained more time-dependent features than Ridge Regression

for two reasons: (1) its tree-based structure better handles multicollinearity, and (2) removing any of

the top time-dependent features significantly worsened MSE, indicating their collective importance

in capturing key patterns. While Random Forest can manage larger feature sets, additional variables

held low importance and thus were excluded. Notably, one-hot encoded department variables were

unnecessary, as the model effectively captured time-based trends without spatial identifiers. The

hyperparameter tuning results are summarized in Table 3. After testing hundreds of parameter
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combinations, the final model used n_estimators = 500, max_depth = 9, min_samples_split

= 5, and min_samples_leaf = 15, achieving a log MSE of 3.7 on the validation set.

Figure 12: Final feature selection results for the Random Forest model

Table 3: Summary of hyperparameter testing for Random Forest

5.3.2. Testing Results and Residual Plots: As detailed in Table 1, the Random Forest model

achieved a test MSE of 3.334 on the log scale, thus outperforming the baseline Linear Regression

and Ridge Regression models, but slightly underperforming in comparison to XGBoost. The

Random Forest residual plot in Figure 13 is quite similar to the Ridge Regression plot, showing a

visible diagonal cluster of residuals below zero, corresponding to cases where the model tends to

overpredict small or zero values. There is also a similar tendency to underpredict higher values, as

shown in the actual versus predicted plot on the right in Figure 14. In some sense, it seems that

when dealing with widely fluctuating data, predicting a value too extreme on either end is “risky.”
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Figure 13: Residual plot for the Random Forest

Model.[10]

Figure 14: Random Forest Actual versus Predicted

plot.[10]

Figure 15: Random Forest feature importance graph shows a heavy dependence on EMAs and rolling

averages, as well as socioeconomic features like events of sexual crimes and homicides.

5.3.3. Feature Importance: The feature importance plot in Figure 15 highlights the dominant

role of time-based predictors, such as EMAs and rolling averages, emphasizing the significance of

recent trends in shaping predictions. The 2, 5 and 6 month lags are significant but less important,

demonstrating the utility of the more complex engineered time-dependent features. With regards to

socioeconomic features, events of sexual crimes, displacement and homicides rank most highly,

and urban and rural population statistics are also relevant. Interestingly, department features are

not important for this model, demonstrating its ability to draw generalized patterns from the data

without explicitly identifying departments.
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5.4. XGBoost:

5.4.1. Feature Selection and Hyperparameter Tuning Results: Feature selection results, shown

in Figure 16, highlight the dominance of the six-month EMA, which remained the most important

feature even when included as the sole time-dependent variable. Replacing it with four or five other

time-dependent features increased the log MSE by 0.1, while the remaining features contributed

marginal importance. Consequently, the final selected features relied heavily on six-month

exponential and rolling averages, with minimal reliance on socioeconomic or department-level

features. Hyperparameter testing results are summarized in Table 4, focusing on key distinctions to

justify the final configuration. The final model used used n_estimators set to 700, learning_rate

set to 0.01, max_depth set to 2 and min_child_weight set to 11, achieving a log MSE of 3.831

on the validation set.

Figure 16: Final feature selection results for XGBoost

Table 4: Summary of hyperparameter testing for XGBoost
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Figure 17: Residual plot for XGBoost.[10] Figure 18: XGBoost Actual vs. Predicted plot.[10]

5.4.2. Testing Results and Residual Plots: As detailed in Table 1, the XGBoost model achieved a

test MSE of 3.288 on the log scale, thus outperforming all other models. The residual plot for the

XGBoost model in Figure 17 is again quite similar to the residual plots for both the Random Forest

and Ridge Regression models. In all three cases, the residuals are mostly well-distributed around

zero, but there is a clear diagonal cluster of negative residuals corresponds to cases where the model

tends to overpredict small or zero values. It also struggles with underpredicting higher values, and

while most residuals are close to zero, there are certainly outliers with significantly higher residuals,

as further illustrated in Figure 18.

Figure 19: XGBoost final feature importance graph shows a heavy reliance on the 6-month EMA and

to a lesser extent the 6-month rolling average.
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5.4.3. Feature Importance: The feature importance plot in Figure 19 highlights the dominant

role of engineered features, particularly the 6-month EMA and rolling averages. Indeed, as

previously discussed, most features are largely outweighed by the importance of the 6-month EMA.

Despite hyperparameter tuning efforts during training using max_depth and min_child_weight

to encourage the model to utilize more features, the best results ultimately still came from using

the features outlined above, despite this imbalance. Regarding socioeconomic factors, events of

homicide, government anti-narcotics operations (captured in Historical Dismantling Labs)

and rural population statistics are most important, though significantly less so than the time-dependent

features. The Ocean_department feature is ranked 5th, indicating that a department’s presence on

the coastline is relatively important. However, one-hot-encoded department features do not play a

large role in XGBoost, in contrast to Ridge Regression.

5.5. Error Analysis:

Error analysis reveals consistent patterns across all models, including a recurring challenge with

zero values. Residual plots highlighted diagonal lines of errors for zero values, where predictions

were consistently overpredicted. This reflects a broader issue with skewed data distributions and

suggests a need for alternative transformations or non-linear methods to better capture data extremes.

While the selected transformation of log(G + 1) proved better than the alternative transformation of

log(G + 0.01), further experimentation with transformations could enhance performance.

Despite extensive feature engineering, all models struggled to capture sharp spikes and drops in

seizure quantities. For example, the time-series plot in Figure 20 demonstrates XGBoost’s ability to

capture broad trends quite well, but it also indicates that the model still fails to quite reach extreme

values, especially on the lower end. However, when compared to the baseline Linear Regression

model’s time series plot in Figure 21, the improvement with XGBoost is evident. Indeed, the

baseline model’s inferior performance highlights the importance of incorporating time-dependent

engineered features and leveraging more complex models, as XGBoost is far better able to capture

volatile patterns. Ridge Regression and Random Forest, while also performing significantly better
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than the baseline, slightly underperform compared to XGBoost. Similar time-series plots for these

models can be found in Appendix H. Although the MSE differences are relatively small on the log

scale and thus less visually distinct in graphs, Figure 22 illustrates XGBoost’s superior performance

across most departments, with the exception of highly volatile regions like Córdoba and Sucre, in

which it performs slightly worse. On average, however, it outperforms both Ridge Regression and

Random Forest.

Figure 20: Time-series plot for the XGBoost Model, where each index corresponds to a time-step

prediction for a particular month and department.[10]

Figure 21: Time-series plot for the baseline Linear Regression model, where each index corresponds

to a prediction for a month and department.[10]
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Figure 22: Department MSE breakdowns across all three models show consistent trends of "hard"

and "easy" departments. Note that MSEs are on the log scale here.[22]

Indeed, the model’s limitations in capturing sudden or extreme fluctuations in trafficking activity

were particularly evident in certain "hard" departments. Figure 22 shows a breakdown of department

MSEs across all three models, demonstrating the consistency of these trends across models. In

particular, Córdoba, Sucre and Atlántico proved particularly challenging. On the other hand, Vaupés,

Nariño and Magdalena were among the most consistently well-predicted departments. Taking a

closer look at these departments under the XGBoost model, we see that they are characterizied by

dramatic and sudden fluctuations that prove hard to predict, as shown in the example graphs of Sucre

and Córdoba in Figure 24 and Figure 23 respectively. With regards to well-predicted departments,

Vaupés is characterized by particularly low seizure quantities; thus, it is intuitive that it would have a

low MSE. However, Nariño and Magdalena both exhibit fairly large seizure quantities, but these

trends are still somewhat smoother and thus easier for the models to capture. Figure 25 shows the

department-specific time-series plots for Magdalena under XGBoost as an example. Encouragingly,

departments with the highest total quantities of cocaine seized over the eleven-year period - including
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Nariño, Valle del Cauca, Antioquia and Norte de Santander - were consistently well-predicted across

all three models, as shown in Figure 22 and 26. Given their prominence in Colombia’s trafficking

network, this suggest that the models are successfully identifying key drivers of sustained trafficking

activity, even as they struggle with highly volatile regions. More department-specific plots for Ridge

Regression and Random Forest can be found in Appendix I and Appendix J respectively.

Figure 23: The Sucre time-series plot for XGBoost

demonstrates how dramatic changes prove partic-

ularly difficult to capture.[10]

Figure 24: The Córdoba time-series plot for XG-

Boost is another "hard" department, characterized

by sudden and large variations.[10]

Figure 25: The Magdalena time-series plot for XG-

Boost demonstrates how smoother and less dra-

matic trends prove easier to capture.[10]

Figure 26: The Norte de Santander time-series plot

for XGBoost is impressive given that it is a major

trafficking hotspot.[10]

In conclusion, error analysis identifies two major points. Firstly, despite efforts to address zero

values with transformations, this remains an area to explore further in the future, as demonstrated

in the residual plots. Secondly, while this paper’s extensive feature engineering certainly made

progress in addressing the challenge of volatile time-series data, as seen across the well-predicted

department examples and in the major improvement from the baseline, there is much room for further

exploration. This is particularly true for regions characterized by especially dramatic fluctuations.
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6. Discussion and Conclusion

6.1. Feature Importance Across Models:

Figure 27 displays a heatmap of the top 20 features across all three models, sorted by ranking. Across

all models, 6-month EMAs emerged as the most important feature, underscoring the predictive

value of recent trends in seizure quantities. EMAs effectively captured short-term fluctuations while

smoothing noise, making them particularly well-suited for modeling volatile patterns associated

with drug trafficking activity. Rolling minimum, maximum and average values also proved relatively

important, but less unanimously, with different features appearing in the top features of different

models. These features provided insights into the upper and lower bounds of seizure activity over

specified time windows, offering a more dynamic view of temporal patterns compared to static

lag values. Traditional lag features, while still prominent in Random Forest, were consistently

less important than the aforementioned engineered features, suggesting that the time-dependent

engineered features provided richer predictive signals than simple lags. Features capturing seasonal

trends were largely unimportant, as were cumulative sums, growth rates and momentum indicators.

These findings respond directly to prior work, such as Bazzi et al., offering EMAs and rolling

minimum, maximum and average values as a potential, or at least partial, solution to modeling

highly variable time-series data.[1]

Historical government enforcement activity, captured through the variable representing the

historical dismantling of drug labs, also proved highly influential across all three models. This

suggests that departments with a history of trafficking and government-sponsored anti-narcotics

operations remain susceptible to trafficking today, highlighting the resilience of trafficking networks.

Socioeconomic features, including events of homicides, urban and rural population ratios and (to

a lesser extent) events of displacement, consistently emerged as relatively important predictors

in the models, though less so than those already mentioned. These findings align with existing

literature emphasizing the connections between violence and trafficking patterns.[8] High homicide

rates and displacement events likely signal broader insecurity and weakened governance structures,
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Figure 27: Heatmap of top 20 features across models by ranking. Not used labels refer to features

that did not appear in model at all.[22]

creating conditions that trafficking organizations exploit to establish and expand their operations.

The importance of population ratios also suggests that both urban and rural areas play distinct

roles in trafficking dynamics. Urban centers may enable trafficking organizations to take advantage

of increased labor, infrastructure and transportation networks. Conversely, sparsely populated

rural areas may provide cover for drug production and storage, benefiting from lower visibility.

Interestingly, economic factors such as inequality and poverty levels were less influential in the

models than initially anticipated. While economic vulnerabilities are often cited as drivers of

trafficking, their relatively lower importance may indicate that other structural and geographic factors

play a more immediate role in shaping trafficking activity. It is also possible that economic factors

operate more indirectly, influencing broader patterns of violence and governance rather than serving

as direct predictors of trafficking.

With regards to geographic features, the Ocean_department feature, which identifies depart-

ments located along Colombia’s coast, proved important in both XGBoost and the Ridge Regression

model, though it was not included in Random Forest. This aligns with the existing literature suggest-

ing that trafficking routes often follow coastal pathways. Interestingly, the Border_department
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feature, which identifies departments along Colombia’s borders, did not appear in the top 20

features of any of the three models. With respect to one-hot-encoded department features, these

proved most important in the Ridge Regression model. However, Random Forest and XGBoost

placed little weight on department-identifying features, instead prioritizing time-dependent and

socioeconomic features. This shift may reflect their ability to generalize patterns across regions

rather than distinguishing between localized trends.

Overall, the feature selection process presented a notable challenge due to the large number

of variables and the presence of high multicollinearity among lags. Careful engineering of time-

dependent features paid off, as demonstrated by the dominance of EMA and rolling averages in

the final models’ feature importance results, but it also highlighted limitations when these features

began to dominate model behavior, particularly the 6-month EMA in the XGBoost model. Future

work could refine feature selection by incorporating more contextual predictors and spatial variables

to reduce dependency on time-based features.

6.2. Limitations and Future Work:

While this study achieved meaningful insights, several limitations remain. Perhaps the biggest

constraint was data availability, as the target variable data only dates back to 2012. Indeed, a

plan to incorporate recently released 2023 UN data proved challenging due to a lack of available

socioeconomic indicators for 2023, though this remains a promising avenue for future work once that

data becomes available. Additionally, expanding the socioeconomic dataset to include indicators

such as current law enforcement presence and road connectivity could prove helpful. With MSE

values stabilizing around 3.3 on the log scale, further progress may depend on integrating more

granular data and adopting advanced spatial and temporal techniques. For example, spatial lag

features, as employed in Zuckerman Daly’s work, could capture spillover effects across regions

and better account for interdependencies in trafficking routes.[24] Future work could also explore

more complex modeling techniques, including Vector Autoregression and ensemble approaches, to

capture temporal and spatial dynamics more effectively. Although this study prioritized manual
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feature engineering over automated modeling techniques, balancing these approaches may improve

predictions of particularly volatile trends. Finally, as discussed above, experimenting with further

transformations to reduce zero values in the target variable may also improve model performance.

In conclusion, this project represents a novel application of machine learning to analyze the

dynamics of drug trafficking in Colombia. It demonstrates the effectiveness of engineered features

in capturing complex patterns within time-series data while highlighting persistent challenges in

modeling extreme values, sudden fluctuations and regional variability. The results also reinforce

existing literature on the correlation of socioeconomic factors, particularly crime, population density

and historical enforcement activity, with trafficking patterns. Although the models successfully

captured broad trends, further refinements, particularly through expanded datasets, offer promising

avenues to deepen our understanding of trafficking networks and inform policy interventions.
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