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1 Introduction
1.1  Motivation

What is the problem? Despite rapid progress in reinforcement learning, state-of-the-art
performance is still scattered across highly specialized algorithms: Rainbow dominates
Atari while TD3 and SAC prevail in Gym/MuJoCo tasks. Each of these methods is
carefully hand-tuned for its target domain, and their hyperparameters rarely transfer
beyond it. In contrast, a general model is one that maintains strong performance across
very different tasks - from discrete-action pixel-based Atari games to continuous-control
vector-based Gym locomotion tasks - without domain-specific hyperparameter tuning.
Current generalist agents such as DreamerV3 or TD-MPC2 have made progress toward that
goal, but they use enormous networks and expensive online planning, resulting in high
computational costs. They therefore remain largely out of reach for practical, everyday use.
Thus, the field still lacks a lightweight, general model that can achieve SOTA performance
across the major benchmark families (Atari, Gym, DMC-visual/control). MR.Q endeavors
to fill this gap: its goal is to demonstrate that with a minimalist architecture and a single
set of hyperparameters, a model-free algorithm can deliver competitive performance across
domains without the heavy compute burden of existing generalists.

Why is it interesting and important? From a practical standpoint, a general model removes
the bottleneck of domain-by-domain hyperparameter sweeps, dramatically streamlining
research workflows. A lightweight general model also dramatically reduces the required
compute power. Yet, the importance of such a model extends beyond just practical efficiency.
A truly general model can help us understand the essential ingredients of control across
domains - whether that be representation learning, planning or exploration - without the
camouflage of domain-specific tricks, giving us cleaner signals about what actually matters.
Furthermore, because such an algorithm can be “dropped in” with minimal tuning, it
lowers the barrier to entry for researchers with modest compute budgets or for users who
want an off-the-shelf model. As a result, RL becomes far more accessible to all.

Why is it difficult? Achieving this goal is difficult precisely because generalizing is an
enormously complex task. A general model must reconcile widely different observation
modalities, such as Atari’s use of raw pixels versus Gym’s use of state vectors, and action
spaces that may be discrete or continuous. In addition, different domains have different
reward scales and density: Atari rewards are frequently sparser or more delayed than
Gym. The domain-specific tricks that may stabilize Atari can thus have the opposite effect
in continuous control, and vice versa. Even the hyperparameter choices can vary, and the
settings they do share in common may still differ widely (see Appendix|A). Delivering
consistent, high performance with a single architecture and hyperparameter set therefore
demands finding a delicate balance that works everywhere, not just somewhere.

Our Goal: Given that MR.Q addresses such an interesting, important and difficult problem,
our goal is to better understand precisely how and to what extent it does so. We focus on
the role of representations, which we consider the most crucial component of the algorithm.

1.2 Prior Work

We define three criteria that a truly general, lightweight model must satisfy: (1) SOTA
performance (2) transferability across domains with minimal retuning and (3) modest
computational cost (parameter count and wall-clock training time). We illustrate that no
existing line of work meets all three at once. MR.Q is designed to fill that gap.
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Generic Policy-Gradients: Algorithms such as PPO and TRPO make minimal assumptions
about the domain and therefore can be transferred across tasks relatively easily.[12][11]
For example, after minor network adjustments, the core clipped-objective update of PPO
still holds for either pixels or vectors and discrete or continuous action spaces.[8] However,
their on-policy nature wastes trajectories and leaves them far less sample-efficient than
off-policy Q-learning methods. In practice, they trail behind SOTA performance, thus
failing to fully meet criteria (1) and (2).

Domain-specific, model-free specialists: Q-learning based methods such as Rainbow on
Atari and TD3 on Gym/MuJoCo achieve SOTA performance in their home domains with
high sample efficiency.[4][7] To do so, each method is highly tuned to its home domain. For
example, TD3 assumes a continuous action space and injects Gaussian exploration noise
that is calibrated for MuJoCo’s torque magnitudes and ranges. Applying it to Atari, which
uses discrete actions and pixel inputs, would require dramatic overhauls to the central
components of the algorithm - including Gaussian exploration noise, target smoothing and
the actor head - effectively inventing a new algorithm (TD3-Discrete).[8] Precisely because
these algorithms overfit to their home domains, they are more difficult to transfer across
tasks. They thus fail to meet criteria (1) and (2) across domains.

Model-based Generalists: DreamerV3 and TD-MPC-2 narrow the gap by coupling power-
ful latent-dynamics models with online planning, thus enabling a single hyperparameter
set to span Atari, Gym and DMC suites.[5][6] That generality, however, is bought with
heavy compute: tens of millions of parameters, expensive online rollouts, and training
rates of less than 20 frames per second.[3] This heavy computational expense limits their
everyday use, thus failing to meet criteria (3).

Representation-only Models: Recent work such as TD7 shows that learning a rich state-
action embedding - without explicit planning - can boost performance while keeping
networks small.[2] TD7 was evaluated specifically on continuous control tasks, thus not
fulfilling criteria (2), but we view this line of work as a crucial precursor to MR.Q.

How MR.Q Fills This Gap: Building on TD7 and in contrast to existing generalists, MR.Q
decouples representation learning from planning entirely.[3] It learns representations
via approximately linear state action embeddings, which serve to unify the input space,
and then integrates that learned embedding into a TD3-style backbone. In contrast to
TD7, MR.Q includes additional losses over reward and termination and makes a series
of design choices with the goal of generality in mind, namely multi-step returns and
categorical losses. Empirically, MR.Q dramatically reduces the computational cost of
training, requiring only about 4 million network parameters and training at 49 frames per
second, in comparison to DreamerV3’s 18 and TD-MPC2’s 14 frames per second training
rates. It further achieves the best average performance across the 4 benchmark suites when
compared to both SOTA domain-specific models and these existing generalists.[3] Thus,
MR.Q meets our defined criteria: (1) SOTA performance (2) generality across domains and
(3) a lightweight footprint. For more algorithmic details, see Appendix B.

Relation to Our Work: We identify the use of representations only, as initially introduced
in TDy, as what sets MR.Q apart from previous generalist models. Therefore, this paper
interrogates that design choice directly.

1.3 Overview of Our Approach + Limitations

We center our work around MR.Q’s core assertion that the true strength of model-based
learning stems primarily from the latent representation rather than explicit planning.
Although MR.Q is compared against planning-based methods like DreamerV3 and TD-
MPC2, the original paper does not directly contrast a representation-only agent with
one that also incorporates planning atop the same learned embeddings. To fill that gap,
we design two variants sharing the same MR.Q encoder: Representation-Only, which
performs a standard model-free Q-update without any online rollouts, and Representation
+ Planning, which uses a one-step look-ahead in latent space during policy updates. If
Representation + Planning offers only marginal improvements, that would bolster MR.QQ’s
claim that representations alone drives most of the performance gains; if it substantially
boosts results, it suggests that even with a strong latent embedding, an explicit planning
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step still provides meaningful benefits. Finally, should planning worsen performance, it
may indicate that model inaccuracies overshadow any potential gains.

Given the centrality of representations to MR.Q, we also investigate how much capacity
these embeddings truly need. The original paper sets the latent state dimension (zs_dim),
latent state-action dimension (zsa_dim) and latent action dimension (za_dim) to [512, 512,
256]. Keeping the original Representation-Only approach fixed, we sweep through three
progressively smaller embedding dimensions: [256, 256, 128], [64, 64, 32] and [16, 16, 8]. We
hypothesize that moderate reductions will retain most of MR.Q'’s benefits, but aggressively
small embeddings will harm performance, especially for more complex tasks.

Ultimately, our study zeroes in on two questions that remain unanswered in the original
paper: (i) Does an explicit planner still matter once you have a strong MR. Q-style
representation? and (ii) How small can that representation become before performance
deteriorates? We find that a single-step planning update often fails to help and even hurts
performance - particularly in sparse-reward, pixel-based tasks - while scaling down the
representation tends to be more forgiving in discrete or lower-dimensional settings than in
complex continuous-control domains.

Our study is primarily limited by time and compute power: we select just five environments
across the benchmarks suites and evaluate on three seeds. We implement only a simple
one-step planning mechanism but acknowledge that there may be ways to improve it,
namely by retuning certain hyperparameters or varying the look-ahead horizon. However,
despite these limitations, we nevertheless offer a valuable initial exploration into what we
believe is the most fundamental component of MR.Q: its learned representations.

2 Methods

2.1 Reimplementation Overview

Our reimplementation is based on the existing codebase for MR.Q, but we significantly
refactor the code from scratch to better suit our needs.[9] Key differences include:

* models.py: We retain the same network architectures as in the original imple-
mentation to match baseline performance. However, we refactor the Encoder to
improve modularity and include a helper function for one-step planning.

* mrq_agent.py: We rewrite the code to more explicitly follow a TD3 backbone. Our
central train function thus follows the pseudocode from the paper explicitly (see
Appendix [B). We rewrite the losses from scratch in a separate losses.py file to
make them explicit and easily accessible. We also add a branch for planning logic.

* main.py: We introduce a minimal Typer interface enabling straightforward experi-
mentation via flags for use_planning and embedding dimensions.[10] We replace
the original Logger with Weights and Biases logging, through which we track train-
ing and evaluation rewards, losses and wall-clock time.[13] We omit checkpointing,
loading and saving logic, which was unnecessary for our purposes.

We use the original reward two-hot encoding, replay buffer and environment preprocessing
logic. Other than our ablations, we use the hyperparameters from the original paper,
located in hyperparameters.py. Details are thoroughly documented in our repository.

2.2 Experiments

Environment Selection: As illustrated in Table [1, we select five environments to provide
a representative yet manageable test suite spanning different action types (discrete vs.
continuous), input modalities (pixel vs. vector) and task complexities. In the Atari domain,
Alien is a classic maze-shooting game, while Frostbite demands precise hops across shifting
ice blocks to build an igloo, reflecting sparser rewards and higher difficulty. Among the
Gym tasks, Ant and Humanoid both involve high degree of freedom continuous control
tasks, with Humanoid being notably more complex. Finally, DMC-Visual Ball in Cup
Catch presents a pixel-based continuous control manipulation challenge, in contrast to the
vector-based locomotion of the Gym tasks. We use three random seeds (o, 1, 2) and align
our training durations with those recommended in the original MR.Q repository.[g]
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Environment Total Timesteps Raw Observation Space Raw Action Space
Atari Alien-vs 2M Pixel (210, 160, 3) Discrete (18)
Atari Frostbite-vs 2M Pixel (210, 160, 3) Discrete (18)
DMC-Visual ball_in_cup-catch 500K Pixel (84, 84, 3) Continuous [—1,1]2
Gym Ant-v4 1M State Vector (27,) Continuous [—1,1]®
Gym Humanoid-v4 1M State Vector (376,) Continuous [—0.4,0.4]17

Note that MR.Q standardizes pixel inputs to the shape (84, 84, 3).
Table 1: Five benchmark environments used in this study/[x]

Representation Only vs. Representation + Planning Experiment: Our first experiment
compares two variants of training the policy: one that directly uses the learned Q-value for
the current state and action (“Representation Only”) and another that performs a one-step
look-ahead in latent space (“Representation + Planning”). Both approaches share the same
underlying policy and encoder networks but differ in how they compute the policy update.
Put concretely, we test:

. Qo,i(Zsar ), use_planning = False
Qi = (1)
?+ Yplan (1 — d) Qo,i(zl,a'), use_planning = True

where Yplan = 0.99, z/ is the predicted next latent state, 7 is the predicted reward (scaled

and decoded from two-hot representation) and d is the predicted termination signal. The
action a’ is computed by the current policy evaluated at z, but is held fixed (no gradient

flows through a’). The policy then minimizes the loss:

Loolicy (A7) = —0.5 Y. Qi(zsar) + Apre-activ 72, where a; = activ(z;)  (2)
i={1,2}

A simple use_planning flag as a Typer argument and a corresponding branch in the
train_policy function within the agent file allows us to easily toggle between these two
strategies without altering the rest of the MR.Q pipeline.

Embedding Dimension Experiment: For our second experiment, we compare the original
embedding dimensions (zs_dim, zsa_dim, za_dim) of [512, 512, 256] to three progressively
smaller dimensions: [256, 256, 128], [64, 64, 32] and [16, 16, 8]. These new embedding
dimensions are specified via Typer flags and fed directly into the Encoder. To isolate the
impact of the embedding dimensions, the policy and value networks sizes remain fixed.

Evaluation Metrics and Logging: Using Weights and Biases, we log training rewards,
episode lengths and losses (encoder, policy and value).[13] We also log the wall-clock
training time per run to see whether our ablations have a significant impact on training
time. We realize, however, that this metric only proves useful when rewards are comparable;
otherwise, differences in training times may be due to poorer performance (resulting in
shorter episode lengths) rather than increased computational efficiency. Finally, we log
evaluation rewards, evaluating over 10 episodes every 100,000 steps for Atari and every
5000 steps for Gym/DMC-Visual, matching the original paper.[9]

Limitations: Our study is restricted to five environments and three seeds due to com-
putational and time constraints. Future work could investigate a broader set of tasks,
though we endeavor to make our set as representative as possible. With respect to the first
experiment, future work could examine multi-step latent planning and consider whether
retuning certain hyperparameters might help improve performance. With respect to the
second experiment, future work could explore different state to action dimension ratios.

3 Results
3.1 Reimplementation vs. Original MR.Q Performance

Before presenting our main experiments, we first verify that our reimplementation achieves
comparable performance to the original MR.Q algorithm. We plot the original repository’s
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Although training trajectories diverge slightly, the final performance converges close
across all five environments. We attribute small discrepancies to routine run-to-run
variance and our subtle implementation changes, but overall, these results confirm a
faithful reimplementation of MR.Q.

reported results against our reimplementation and provide the figures in Appendix lF_
y

3.2 Representation Only vs. Representation + Planning Results
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Figures|1]-[5|shows the results of our first experiment across our five environments. Overall,
we see no universal advantage from adding a single planning step.

Atari Alien and Frostbite: Representation Only attains higher evaluation rewards through-
out training, with the discrepancy especially pronounced for Frostbite, where the agent
hardly learns at all. One likely explanation is that single-step model prediction is error-
prone for high-dimensional pixel-based states, and these errors can mislead the planning
updates. Frostbite poses a particularly sparse-reward challenge, making accurate next-state
and reward predictions especially critical.

Gym Ant and Humanoid: Both methods track each other more closely, although with
greater variance in the more complex Humanoid task. The smoother dynamics and denser
reward structure likely make single-step errors less common and harmful than in Atari.

DMC-Visual Ball in Cup Catch: While the raw input space is pixel-based, the environment
is simpler than Atari in terms of task and reward structure (grasp and lift the ball), resulting
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in smaller performance gaps. The two methods converge to similar ranges of final reward,
though the Representation Only setting is ultimately higher.

Wall-clock Training Time: We were initially curious to see whether this experiment might
produce differences in wall-clock training time, which are illustrated in Figure [)| However,
we refrain from drawing any conclusions based on the existing results, as it is very likely
that the poorer performance of the planning runs led to faster training time, as it reduced
the length of episodes, rather than actually improving computational efficiency.

Trends Across Environments: Overall, adding a single planning step seems to harm,
rather than help, performance. This is particularly true for the Atari environments and
especially Frostbite, suggesting that discrete-control settings with sparser rewards are
particularly hard to predict in latent space. Even small inaccuracies can compound and
steer learning away from good solutions. Meanwhile, the continuous-control tasks with
denser rewards and smoother transitions (Gym, DMC-Visual) do not exhibit as strong a
discrepancy, suggesting that single-step planning is more sensitive to domain complexity
and reward sparsity than was initially expected. Additional graphs - including episode
lengths and losses over training - can be found in Appendix ﬁ

3.3 Embedding Dimension Ablations Results

In Figures [7{11, we show the results of our embedding dimension ablation study. We
note that due to time constraints, we only ran the [16, 16, 8] setting on seeds o-1 for the
DMC-Visual environment and seed 2 for Atari Frostbite (indicated in figures); those results
may not be statistically significant. We omit wall clock times, as we doubled up some
runs on a single GPU and therefore cannot attribute differences to embedding dimension
changes alone. Loss figures can be found in Appendix [E.

Gym Ant and Humanoid: Figure|7| demonstrates that embedding dimensions of [512, 512,
256] perform best for Ant, while [256, 256, 128] and [64, 64, 32] perform comparably worse
and [16, 16, 8] hardly learns at all. Figure |§ demonstrates a similar trend for Humanoid,
though rewards decrease with embedding size in a more proportional manner: the gap
between 512 and 256, for example, is smaller than between 512 and 64.

Atari Alien: In Figure |§, [512, 512, 256], [256, 256, 128] and [64, 64, 32] all perform
more comparably for Alien than in the Gym tasks. Interestingly, [64, 64, 32] actuall
seems to outperform [256, 256, 128] and roughly matches [512, 512, 256]. In Figure E_g,
we see a similar trend in Frostbite, where the three largest embedding sizes perform
rather comparably, though [256, 256, 128] does slightly outdo [64, 64, 32]. In both cases,
an embedding size of [16, 16, 8] performs noticeably worse, especially for Frostbite.
Both environments show more sizable variance across seeds, particularly in the largest
embedding for Frostbite, making it more difficult to declare a definitive “winner.”

DMC-Visual Ball in Cup Catch: In Figure \1_}, all four embedding sizes manage to
maximize reward, though interestingly, it takes slightly longer for the [512, 512, 256] size
to learn.
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Trends Across Environments: We consider these results in the context of the environments’
observation and action spaces, as initially laid out in Table|1} The Gym environments have
relatively large, continuous control observation and action spaces. Larger embeddings
may allow the latent state to more flexibly encode the salient features and manage the
higher dimensional control problem - hence the top performance with [512,512,256]. When
the embedding size is reduced, we see a decrease in performance, especially for the more
complex Humanoid task. For the Atari environments, even though the standardized pixel
input shape is (84x84x3), the action space is discrete and smaller, and the CNN used for the
encoder likely already helps compress the input. Therefore, it seems that beyond a certain
capacity, the embeddings can capture most of the important features, meaning that the
larger embeddings are closer in performance. For both the Gym and Atari environments
however, an embedding dimension of [16, 16, 8] is simply too small to capture enough
information. Finally, DMC-Visual’s results further illustrate that with a pixel-based input
but simpler action space, smaller embeddings can learn the key dynamics even more quickly
than the largest embedding.

4 Discussion and Limitations

We investigated two complementary questions regarding MR.Q'’s learned representations:
(1) whether incorporating a single-step latent-space planning update improves learning
and (2) how different embedding dimensionalities affect performance. Our results across
five benchmark environments suggest that single-step planning does not provide a uniform
advantage over a purely representation-based approach, especially in sparse-reward, pixel-
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based settings like Atari Frostbite. Meanwhile, embedding size has a clear effect in
high-dimensional continuous control tasks such as Gym Ant and Humanoid, where larger
embeddings consistently outperform smaller ones. On simpler or discrete domains such as
Atari, differences between moderate and large embeddings are less pronounced, and on
DMC-Visual Ball in Cup Catch, smaller embeddings even learn faster initially.

A critical assumption in the one-step planning approach is that the learned latent model
can predict future states and rewards accurately enough for the additional Q-value update
to help, rather than hinder. Our experiments suggest that when prediction errors are
high (especially in pixel-based, sparse-reward Atari tasks), these inaccuracies can distort
the Q-values and degrade performance. Our work was limited to a single planning step,
but it is possible that searching over the planning horizon (and perhaps retuning other
hyperparameters) might yield more consistent benefits in future work.

With respect to our embedding ablations, we limited our investigation to a constant state to
action dimension ratio of (1:2), but future work could explore other ratios. We also limited
each environment to three seeds, which illustrated major trends but left smaller effects
susceptible to run-to-run variance, particularly for the Atari environments, in which it was
more difficult to decisively declare any single embedding size “best.”

With respect to MR.Q’s core claim that the true strength of model-based learning lies in
the learned representations rather than model itself, we conclude that single step planning
indeed does not offer any significant performance gains, though again more sophisticated
planning algorithms might perform better. Our experiments also reveal that MR.Q’s ability
to learn effective latent representations is strongly dependent on the environment. This
outcome underscores a broader limitation: the learned world-model may be significantly
noisier for discrete, pixel-based Atari than for continuous, vector-based Gym. Conse-
quently, (simple) planning in such settings can cause large compounding errors in Q-value
estimation. Furthermore, we find that it may be possible to reduce the embedding size for
certain domains while largely maintaining performance. This comes with the tradeoff of
including an additional hyperparameter to specify, but it could help reduce computational
costs and make MR.Q even more lightweight.

Ultimately, our work reiterates the broader challenge of developing a truly general model:
finding an approach that works across domains is extremely challenging. Nevertheless,
by examining how our experiments affect performance across different environments, we
move closer to understanding how general models might allocate representational and
planning resources in the future.
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Appendix A Further Illustrating the Challenge of Generality

Figure [12, taken from the original paper, helps illustrate the difficulty of developing a
general model. Rainbow and TD3 - two SOTA models on their home domain - use different
hyperparameter settings, and even those they share in common differ widely.[3] This helps
demonstrate both why domain-specific SOTA models fail to transfer easily across domains
and why the problem of generality is so challenging: there is no immediate one-set fits all
solution to hyperparameter tuning.

Appendix B Detailed Overview of Original MR.Q Algorithm

Figure 13} taken from the original paper, provides psuedocode illustrating the key aspects
of the MR.Q algorithm.[3] MR.Q learns a latent-space representation alongside a stan-
dard Q-value function, effectively combining model-based and model-free RL in a single
framework. Given a transition (s, a,r,d,s’) from the replay buffer (utilizing Loss-Adjusted
Prioritization), MR.Q first encodes the state s via a state encoder zs = f;,(s). It then merges
this latent state z; with the action a to form a state-action embedding. A linear MDP
predictor maps this embedding to predictions of the next latent state, reward 7 and done

signal d. Meanwhile, a value network Qp uses zg,; to estimate the Q-value, and a policy
network 71y outputs actions based on zs. MR.Q updates each component periodically:
target networks are synced, rewards are rescaled and the encoder is trained. The value
and policy networks are updated each step. Ultimately, by learning both a latent-space
forward model and a standard Q-function, MR.Q can leverage representation learning
benefits while still using an off-policy approach to optimize the policy.
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